Skip to main content
Log in

Circular systems engineering

  • Expert Voice
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

The perception of the value and propriety of modern engineered systems is changing. In addition to their functional and extra-functional properties, nowadays’ systems are also evaluated by their sustainability properties. The next generation of systems will be characterized by an overall elevated sustainability—including their post-life, driven by efficient value retention mechanisms. Current systems engineering practices fall short of supporting these ambitions and need to be revised appropriately. In this paper, we introduce the concept of circular systems engineering, a novel paradigm for systems sustainability, and define two principles to successfully implement it: end-to-end sustainability and bipartite sustainability. We outline typical organizational evolution patterns that lead to the implementation and adoption of circularity principles, and outline key challenges and research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Accenture (2022) The critical role of virtual twins in accelerating sustainability. https://www.3ds.com/sites/default/files/2021-01/dassault-systemes-and-accenture-virtual-twin-and-sustainability.pdf, Accessed: 2023-12-13

  2. Adcock, R.: Principles of Systems Thinking (Part of the Systems Engineering Body of Knowledge—SEBoK) (2012–2023). https://sebokwiki.org/wiki/Principles_of_Systems_Thinking, Accessed: 2023-12-13

  3. AI4Good (2022) AI for Good. https://ai4good.org/, Accessed: 2023-12-13

  4. Albers, A., Lanza, G., Klippert, M., Schäfer, L., Frey, A., Hellweg, F., Müller-Welt, P., Schöck, M., Krahe, C., Nowoseltschenko, K., Rapp, S.: Product-production-codesign: an approach on integrated product and production engineering across generations and life cycles. Procedia CIRP 109, 167–172 (2022). https://doi.org/10.1016/j.procir.2022.05.231

    Article  Google Scholar 

  5. Andersson, J., Skoogh, A., Johansson, B.: Environmental activity based cost using discrete event simulation. In: Winter Simulation Conference 2011, WSC’11, Phoenix, AZ, USA, December 11–14, 2011, IEEE, pp. 891–902 (2011). https://doi.org/10.1109/WSC.2011.6147815

  6. Armendia, M., Cugnon, F., Berglind, L., Ozturk, E., Gil, G., Selmi, J.: Evaluation of machine tool digital twin for machining operations in industrial environment. Procedia CIRP 82, 231–236 (2019). https://doi.org/10.1016/j.procir.2019.04.040

    Article  Google Scholar 

  7. Bangemann, T., Karnouskos, S., Camp, R., Carlsson, O., Riedl, M., McLeod, S., Harrison, R., Colombo, A.W., Stluka, P.: State of the Art in Industrial Automation, pp. 23–47. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-05624-1_2

    Book  Google Scholar 

  8. Barisic, A., Cunha, J., Ruchkin, I., Moreira, A., Araújo, J., Challenger, M., Savić, D., Amaral, V.: Modelling Sustainability in Cyber-Physical Systems: A Systematic Mapping Study (2023). https://hal.science/hal-03616678/

  9. Becker C (2023) Insolvent: How to Reorient Computing for Just Sustainability. National Geographic Books

  10. Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: trends to 2040 & recommendations. J. Clean. Prod. 177, 448–463 (2018). https://doi.org/10.1016/j.jclepro.2017.12.239

    Article  Google Scholar 

  11. Bellis, S., Denil, J.: Challenges and possible approaches for sustainable digital twinning. In: Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, MODELS 2022, Montreal, Quebec, Canada, October 23-28, 2022, ACM, pp 643–648 (2022). https://doi.org/10.1145/3550356.3561551

  12. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.: A survey of variability modeling in industrial practice. In: Proceedings of the 7th International Workshop on Variability Modelling of Software-Intensive Systems, Association for Computing Machinery, New York, NY, USA, VaMoS ’13 (2013). https://doi.org/10.1145/2430502.2430513

  13. Bischoff, Y., van der Wiel. R., van den Hooff, B., Lago, P.: A taxonomy about information systems complexity and sustainability. In: Advances and New Trends in Environmental Informatics, Springer, Cham, Progress in IS, pp. 17–33 (2022). https://doi.org/10.1007/978-3-030-88063-7_2

  14. Bork, D., David, I., Reinhartz-Berger, I., España, S., Guizzardi, G., Proper, H.: The Role of Modeling in the Analysis and the Design of Sustainable Systems. Commun. Assoc. Inf. Syst. (2023)

  15. Brooks, I., Seyff, N., Betz, S., Lammert, D., Porras, J., Duboc, L., Chitchyan, R., Venters, C.C., Penzenstadler, B.: Assessing sustainability impacts of systems: SuSAF and the SDGs. In: Eval. Novel Approach. Softw. Eng., pp. 205–219. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-36597-3_10

  16. Brundtland, G.H.: Our common future-call for action. Environ. Conserv. 14(4), 291–294 (1987)

    Article  Google Scholar 

  17. Caesar, B., Hänel, A., Wenkler, E., Corinth, C., Ihlenfeldt, S., Fay, A.: Information model of a digital process twin for machining processes. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 1765–1772 (2020). https://doi.org/10.1109/ETFA46521.2020.9212085

  18. Capgemini (2022) Digital Twins are a Catalyst to fulfilling Organizations’ Sustainability Agenda. https://www.capgemini.com/us-en/news/press-releases/digital-twins-are-a-catalyst-to-fulfilling-organizations-sustainability-agenda/, Accessed: 2023-12-13

  19. Challenger, M., Vanherpen, K., Denil, J., Vangheluwe, H.: FTG+PM: Describing Engineering Processes in Multi-Paradigm Modelling, pp. 259–271. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43946-0_9

    Book  Google Scholar 

  20. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches for software and system modelling: a systematic literature review. Softw. Syst. Model. 18(6), 3207–3233 (2019). https://doi.org/10.1007/s10270-018-00713-w

    Article  Google Scholar 

  21. Coeckelbergh, M.: Ai for climate: freedom, justice, and other ethical and political challenges. AI and Ethics 1(1), 67–72 (2021). https://doi.org/10.1007/s43681-020-00007-2

    Article  Google Scholar 

  22. Combemale, B., Cheng, B.H.C., Moreira, A., Bruel, J.M., Gray, J.: Modeling for sustainability. In: Proceedings of the 8th International Workshop on Modeling in Software Engineering, Association for Computing Machinery, New York, NY, USA, MiSE ’16, pp. 62–66 (2016). https://doi.org/10.1145/2896982.2896992

  23. Corona, B., Shen, L., Reike, D., Rosales Carreón, J., Worrell, E.: Towards sustainable development through the circular economy-a review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 151, 104498 (2019). https://doi.org/10.1016/j.resconrec.2019.104498

    Article  Google Scholar 

  24. Coyne, R.: Wicked problems revisited. Des. Stud. 26(1), 5–17 (2005). https://doi.org/10.1016/j.destud.2004.06.005

    Article  Google Scholar 

  25. Dahlgaard, J.J., Dahlgaard, S.M.P.: Integrating business excellence and innovation management: developing a culture for innovation, creativity and learning. Total Qual. Manag. 10(4–5), 465–472 (1999). https://doi.org/10.1080/0954412997415

    Article  Google Scholar 

  26. Daly, H.E.: Toward some operational principles of sustainable development. Ecol. Econ. 2(1), 1–6 (1990). https://doi.org/10.1016/0921-8009(90)90010-R

    Article  MathSciNet  Google Scholar 

  27. Daoutidis, P., Zachar, M., Jogwar, S.: Sustainability and process control: a survey and perspective. J. Process Control 44, 184–206 (2016). https://doi.org/10.1016/j.jprocont.2016.06.002

    Article  Google Scholar 

  28. David, I., Bork, D.: Towards a taxonomy of digital twin evolution for technical sustainability. In: ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, MODELS-C, IEEE, pp. 934–938 (2023). https://doi.org/10.1109/MODELS-C59198.2023.00147

  29. David, I., Syriani, E.: DEVS model construction as A reinforcement learning problem. In: Annual Modeling and Simulation Conference, ANNSIM 2022, San Diego, CA, USA, July 18–20, 2022, IEEE, pp. 30–41 (2022). 10.23919/ANNSIM55834.2022.9859369. https://doi.org/10.23919/ANNSIM55834.2022.9859369

  30. David, I., Denil, J., Gadeyne, K., Vangheluwe, H.: Engineering process transformation to manage (in)consistency. In: Proceedings of the 1st International Workshop on Collaborative Modelling in MDE (COMMitMDE 2016) co-located with ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2016), St. Malo, France, October 4, 2016, CEUR-WS.org, CEUR Workshop Proceedings, vol. 1717, pp. 7–16 (2016). https://ceur-ws.org/Vol-1717/paper5.pdf

  31. David, I., Vangheluwe, H., Tendeloo, Y.V.: Translating engineering workflow models to DEVS for performance evaluation. In: Johansson, B., Jain, S. (eds) 2018 Winter Simulation Conference, WSC 2018, Gothenburg, Sweden, December 9–12, 2018, IEEE, pp. 616–627 (2018). https://doi.org/10.1109/WSC.2018.8632470

  32. David, I., Archambault, P., Wolak, Q., Vu, C.V., Lalonde, T., Riaz, K., Syriani, E., Sahraoui, H.: Digital twins for cyber-biophysical systems: challenges and lessons learned. In: 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 1–12 (2023a). https://doi.org/10.1109/MODELS58315.2023.00014

  33. David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F., Malavolta, I., Raschke, A., Steghöfer, J., Hebig, R.: Blended modeling in commercial and open-source model-driven software engineering tools: A systematic study. Softw. Syst. Model. 22(1), 415–447 (2023). https://doi.org/10.1007/S10270-022-01010-3

    Article  Google Scholar 

  34. Dertien, S., Hastings, W.: The State of Digital Thread. PTC Inc, Tech. rep. (2021)

  35. Duboc, L., Betz, S., Penzenstadler, B., Akinli Kocak, S., Chitchyan, R., Leifler, O., Porras, J., Seyff, N., Venters, C.C.: Do we really know what we are building? raising awareness of potential sustainability effects of software systems in requirements engineering. In: 2019 IEEE 27th International Requirements Engineering Conference (RE), pp. 6–16 (2019). https://doi.org/10.1109/RE.2019.00013

  36. Duboc, L., Penzenstadler, B., Porras, J., Akinli Kocak, S., Betz, S., Chitchyan, R., Leifler, O., Seyff, N., Venters, C.C.: Requirements engineering for sustainability: an awareness framework for designing software systems for a better tomorrow. Requir. Eng. 25(4), 469–492 (2020). https://doi.org/10.1007/s00766-020-00336-y

  37. Durdik, Z., Klatt, B., Koziolek, H., Krogmann, K., Stammel, J., Weiss, R.: Sustainability guidelines for long-living software systems. In: 2012 28th IEEE International Conference on Software Maintenance (ICSM), pp. 517–526 (2012). https://doi.org/10.1109/ICSM.2012.6405316

  38. European Commission (2020) Industry 5.0. https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en, Accessed: 2023-12-13

  39. Eversheim, W.: Prozessorientierte Unternehmensorganisation: Konzepte und Methoden zur Gestaltung schlanker Organisationen. Springer-Verlag, Berlin (2013)

    Google Scholar 

  40. Fatima, I., Lago, P.: A review of software architecture evaluation methods for sustainability assessment. In: 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), pp. 191–194 (2023). https://doi.org/10.1109/ICSA-C57050.2023.00050

  41. Ferrer, X., Tv, Nuenen, Such, J.M., Coté, M., Criado, N.: Bias and discrimination in AI: a cross-disciplinary perspective. IEEE Technol. Soc. Mag. 40(2), 72–80 (2021). https://doi.org/10.1109/MTS.2021.3056293

    Article  Google Scholar 

  42. Fontaras, G., Zacharof, N.G., Ciuffo, B.: Fuel consumption and co2 emissions from passenger cars in Europe—laboratory versus real-world emissions. Prog. Energy Combust. Sci. 60, 97–131 (2017). https://doi.org/10.1016/j.pecs.2016.12.004

    Article  Google Scholar 

  43. Foundation EM (2013) Towards the circular economy vol. 1: an economic and business rationale for an accelerated transition. Tech. rep., https://www.ellenmacarthurfoundation.org/

  44. Franciosi, C., Iung, B., Miranda, S., Riemma, S.: Maintenance for sustainability in the industry 4.0 context: a scoping literature review. IFAC-PapersOnLine 51(11), 903–908 (2018). https://doi.org/10.1016/j.ifacol.2018.08.459

    Article  Google Scholar 

  45. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G.S., Friday, A.: The real climate and transformative impact of ICT: a critique of estimates, trends, and regulations. Patterns 2(9), 100340 (2021). https://doi.org/10.1016/j.patter.2021.100340

    Article  Google Scholar 

  46. Fur, S., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J., Rumpe, B., Wortmann, A.: Sustainable Digital Twin Engineering for the Internet of Production, pp. 101–121. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-0252-1_4

    Book  Google Scholar 

  47. Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, SIGIR ’18, pp. 1371–1374 (2018). https://doi.org/10.1145/3209978.3210183

  48. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling in intelligent production systems. Complex Intell. Syst. 6(2), 237–249 (2019). https://doi.org/10.1007/s40747-019-00122-6

    Article  Google Scholar 

  49. Garetti, M., Taisch, M.: Sustainable manufacturing: trends and research challenges. Prod. Plan. Control 23(2–3), 83–104 (2012). https://doi.org/10.1080/09537287.2011.591619

    Article  Google Scholar 

  50. Geissdoerfer, M., Savaget, P., Bocken, N.M., Hultink, E.J.: The circular economy-a new sustainability paradigm? J. Clean. Prod. 143, 757–768 (2017). https://doi.org/10.1016/j.jclepro.2016.12.048

  51. Gkortzis, A., Feitosa, D., Spinellis, D.: Software reuse cuts both ways: an empirical analysis of its relationship with security vulnerabilities. J. Syst. Softw. 172, 110653 (2021). https://doi.org/10.1016/j.jss.2020.110653

    Article  Google Scholar 

  52. Gomes, C.P., Bai, J., Xue, Y., Björck, J., Rappazzo, B., Ament, S., Bernstein, R., Kong, S., Suram, S.K., van Dover, R.B., et al.: Crystal: a multi-agent AI system for automated mapping of materials’ crystal structures. MRS Commun. 9(2), 600–608 (2019). https://doi.org/10.1557/mrc.2019.50

    Article  Google Scholar 

  53. Gramelsberger, G., Kausch, H., Michael, J., Piller, F., Ponci, F., Praktiknjo, A., Rumpe, B., Sota, R., Venghaus, S.: Enabling informed sustainability decisions: sustainability assessment in iterative system modeling. In: ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, MODELS 2023 Companion, Vasteras, Sweden, 2023, IEEE (2023)

  54. Hänel, A., Wenkler, E., Schnellhardt, T., Corinth, C., Brosius, A., Fay, A., Nestler, A.: Development of a method to determine cutting forces based on planning and process data as contribution for the creation of digital process twins. MM Sci. J. 2019(November), 3148–3155 (2019). https://doi.org/10.17973/MMSJ.2019_11_2019064

    Article  Google Scholar 

  55. Hansen, S.T., Gomes, C., Larsen, P.G., Van de Pol, J.: Synthesizing co-simulation algorithms with step negotiation and algebraic loop handling. In: 2021 Annual Modeling and Simulation Conference (ANNSIM), pp. 1–12 (2021). https://doi.org/10.23919/ANNSIM52504.2021.9552073

  56. Harvard Business Review (2016) Which Industries Are the Most Digital (and Why)? https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why, Accessed: 2023-12-13

  57. Heithoff, M., Hellwig, A., Michael, J., Rumpe, B.: Digital twins for sustainable software systems. In: 2023 IEEE/ACM 7th International Workshop on Green And Sustainable Software (GREENS), pp. 19–23 (2023). https://doi.org/10.1109/GREENS59328.2023.00010

  58. Henao-Hernández, I., Solano-Charris, E.L., Noz Villamizar, A.M., Santos, J., Henríquez-Machado, R.: Control and monitoring for sustainable manufacturing in the industry 4.0: a literature review. IFAC-PapersOnLine 52(10), 195–200 (2019). https://doi.org/10.1016/j.ifacol.2019.10.022

    Article  MathSciNet  Google Scholar 

  59. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., Pineau, J.: Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 21(1), 10039–10081 (2020). http://jmlr.org/papers/v21/20-312.html

  60. Hilty, L.M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., Wäger, P.A.: The relevance of information and communication technologies for environmental sustainability—a prospective simulation study. Environ. Model. Softw. 21(11), 1618–1629 (2006). https://doi.org/10.1016/j.envsoft.2006.05.007

    Article  Google Scholar 

  61. Hugues, J., Hristosov, A., Hudak, J.J., Yankel, J.: Twinops—devops meets model-based engineering and digital twins for the engineering of cps. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Association for Computing Machinery, New York, NY, USA, MODELS ’20 (2020). https://doi.org/10.1145/3417990.3421446

  62. Iacovidou, E., Hahladakis, J.N., Purnell, P.: A systems thinking approach to understanding the challenges of achieving the circular economy. Environ. Sci. Pollut. Res. 28(19), 24785–24806 (2021). https://doi.org/10.1007/s11356-020-11725-9

    Article  Google Scholar 

  63. Inhabitat (2020) MIT moves toward greener, more sustainable artificial intelligence. https://inhabitat.com/mit-moves-toward-greener-more-sustainable-artificial-intelligence/, Accessed: 2023-12-13

  64. International Council on Systems Engineering (INCOSE) (2021) Systems Engineering Vision 2035. https://www.incose.org/about-systems-engineering/se-vision-2035, Accessed: 2023-12-13

  65. International Council on Systems Engineering (INCOSE) (N/A) Systems Engineering. https://www.incose.org/about-systems-engineering/system-and-se-definitions, Accessed: 2023-12-13

  66. International Organization for Standardization (ISO) (2021a) ISO 14001:2015—Environmental management systems. https://www.iso.org/standard/60857.html, Accessed: 2023-12-13

  67. International Organization for Standardization (ISO) (2021b) ISO 26000:2010—Guidance on social responsibility. https://www.iso.org/standard/42546.html, Accessed: 2023-12-13

  68. International Telecommunication Union (ITU) (2020) Ict industry to reduce greenhouse gas emissions by 45 per cent by 2030. Tech. rep., https://www.itu.int/en/mediacentre/Pages/PR04-2020-ICT-industry-to-reduce-greenhouse-gas-emissions-by-45-percent-by-2030.aspx

  69. Jensen, J.P., Prendeville, S.M., Bocken, N.M., Peck, D.: Creating sustainable value through remanufacturing: three industry cases. J. Clean. Prod. 218, 304–314 (2019). https://doi.org/10.1016/j.jclepro.2019.01.301

    Article  Google Scholar 

  70. Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., Eschert, T.: Industrial Internet of Things and Cyber Manufacturing Systems, pp. 3–19. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-42559-7_1

    Book  Google Scholar 

  71. Kang, K.C., Lee, H.: Variability Modeling, pp. 25–42. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36583-6_2

    Book  Google Scholar 

  72. Kim, Y., Kim, Y., Yang, C., Park, K., Gu, G.X., Ryu, S.: Deep learning framework for material design space exploration using active transfer learning and data augmentation. npj Comput. Mater. 7(1), 140 (2021). https://doi.org/10.1038/s41524-021-00609-2

    Article  Google Scholar 

  73. Kristoffersen, E., Blomsma, F., Mikalef, P., Li, J.: The smart circular economy: a digital-enabled circular strategies framework for manufacturing companies. J. Bus. Res. 120, 241–261 (2020). https://doi.org/10.1016/j.jbusres.2020.07.044

    Article  Google Scholar 

  74. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  75. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)

    Article  Google Scholar 

  76. Lacoste, A., Luccioni, A., Schmidt, V., Dandres. T.: Quantifying the carbon emissions of machine learning. CoRR abs arxiv:1910.09700 (2019)

  77. Lago, P., Koçak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a property of software quality. Commun. ACM 58(10), 70–78 (2015). https://doi.org/10.1145/2714560

    Article  Google Scholar 

  78. Lambeau, B., Damas, C., van Lamsweerde, A.: Process execution and enactment in medical environments. In: Software Engineering in Health Care, pp. 145–161. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-63194-3_10

  79. Laney, D.B.: Infonomics: How to Monetize, Manage, and Measure Information as an Asset for Competitive Advantage. Routledge, Milton Park (2017)

    Book  Google Scholar 

  80. Le Hesran, C., Ladier, A.L., Botta-Genoulaz, V., Laforest, V.: Operations scheduling for waste minimization: a review. J. Clean. Prod. 206, 211–226 (2019). https://doi.org/10.1016/j.jclepro.2018.09.136

    Article  Google Scholar 

  81. Legaard, C.M., Schranz, T., Schweiger, G., Drgona, J., Falay, B., Gomes, C., Iosifidis, A., Abkar, M., Larsen, P.G.: Constructing neural network based models for simulating dynamical systems. ACM Comput. Surv. 55(11), 2361–23634 (2023). https://doi.org/10.1145/3567591

    Article  Google Scholar 

  82. Li, X., Ortiz, P.J., Browne, J., Franklin, D., Oliver, J.Y., Geyer, R., Zhou, Y., Chong, F.T.: Smartphone evolution and reuse: establishing a more sustainable model. In: 2010 39th International Conference on Parallel Processing Workshops, pp. 476–484 (2010). https://doi.org/10.1109/ICPPW.2010.70

  83. López-Alcarria, A., Olivares-Vicente, A., Poza-Vilches, F.: A systematic review of the use of agile methodologies in education to foster sustainability competencies. Sustainability (2019). https://doi.org/10.3390/su11102915

    Article  Google Scholar 

  84. Ma, Y., Gong, W., Mao, F.: Transfer learning used to analyze the dynamic evolution of the dust aerosol. J. Quant. Spectrosc. Radiat. Transf. 153, 119–130 (2015). https://doi.org/10.1016/j.jqsrt.2014.09.025

    Article  Google Scholar 

  85. Machado, C.G., Winroth, M., da Silva, E.H.D.R.: Sustainable manufacturing in industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58(5), 1462–1484 (2020). https://doi.org/10.1080/00207543.2019.1652777

    Article  Google Scholar 

  86. McGuire, S., Schultz, E., Ayoola, B., Ralph, P.: Sustainability is stratified: Toward a better theory of sustainable software engineering. In: Proceedings of the 45th International Conference on Software Engineering, IEEE Press, ICSE’23, pp. 1996–2008 (2023). https://doi.org/10.1109/ICSE48619.2023.00169

  87. Meadows, D.: Leverage points. Places Interv. Syst. 19, 28 (1999)

    Google Scholar 

  88. Meng, L., Zhang, C., Shao, X., Ren, Y.: Milp models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 210, 710–723 (2019). https://doi.org/10.1016/j.jclepro.2018.11.021

    Article  Google Scholar 

  89. Mihale-Wilson, C., Hinz, O., van der Aalst, W.M.P., Weinhardt, C.: Corporate digital responsibility. Bus. Inf. Syst. Eng. 64(2), 127–132 (2022). https://doi.org/10.1007/s12599-022-00746-y

    Article  Google Scholar 

  90. Mikkonen, T., Taivalsaari, A.: Software reuse in the era of opportunistic design. IEEE Softw. 36(3), 105–111 (2019). https://doi.org/10.1109/MS.2018.2884883

    Article  Google Scholar 

  91. Morseletto, P.: Targets for a circular economy. Resour. Conserv. Recycl. 153, 104553 (2020). https://doi.org/10.1016/j.resconrec.2019.104553

    Article  Google Scholar 

  92. Mouzon, G., Yildirim, M., Twomey, J.: Operational methods for minimization of energy consumption of manufacturing equipment. Int. J. Prod. Res. 45(18–19), 4247–4271 (2007). https://doi.org/10.1080/00207540701450013

    Article  Google Scholar 

  93. Oberdorf, F., Schaschek, M., Weinzierl, S., Stein, N., Matzner, M., Flath, C.M.: Predictive end-to-end enterprise process network monitoring. Bus. Inf. Syst. Eng. 65(1), 49–64 (2023). https://doi.org/10.1007/s12599-022-00778-4

    Article  Google Scholar 

  94. Organisation for Economic Co-operation and Development (OECD) (2008) Key Environmental Indicators. https://www.oecd.org/env/indicators-modelling-outlooks/37551205.pdf, Accessed: 2023-12-13

  95. Osman, I., Ben Yahia, S., Diallo, G.: Ontology integration: approaches and challenging issues. Inf. Fusion 71, 38–63 (2021). https://doi.org/10.1016/j.inffus.2021.01.007

    Article  Google Scholar 

  96. Ournani, Z., Rouvoy, R., Rust, P., Penhoat, J.: On reducing the energy consumption of software: From hurdles to requirements. In: ESEM ’20: ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, Bari, Italy, October 5–7, 2020, ACM, pp. 14:1–14:12 (2020). https://doi.org/10.1145/3382494.3410678

  97. Page, E.H., Opper, J.M.: Observations on the complexity of composable simulation. In: Proceedings of the 31st Conference on Winter Simulation, WSC, pp. 553–560 (1999)

  98. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach. Springer, London (1996). https://doi.org/10.1007/978-1-4471-3581-4

    Book  Google Scholar 

  99. Palomba, F., Nucci, D.D., Panichella, A., Zaidman, A., Lucia, A.D.: On the impact of code smells on the energy consumption of mobile applications. Inf. Softw. Technol. 105, 43–55 (2019). https://doi.org/10.1016/j.infsof.2018.08.004

    Article  Google Scholar 

  100. Pearce, D.W., Turner, R.K.: Economics of Natural Resources and The Environment. Johns Hopkins University Press, Baltimore (1989)

    Book  Google Scholar 

  101. Pennekamp, J., Glebke, R., Henze, M., Meisen, T., Quix, C., Hai, R., Gleim, L., Niemietz, P., Rudack, M., Knape, S., Epple, A., Trauth, D., Vroomen, U., Bergs, T., Brecher, C., Bührig-Polaczek, A., Jarke, M., Wehrle, K.: Towards an infrastructure enabling the internet of production. In: 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), pp. 31–37 (2019). https://doi.org/10.1109/ICPHYS.2019.8780276

  102. Penzenstadler, B., Femmer, H.: A generic model for sustainability with process- and product-specific instances. In: Proceedings of the 2013 Workshop on Green in/by Software Engineering, Association for Computing Machinery, GIBSE ’13, pp. 3–8 (2013). https://doi.org/10.1145/2451605.2451609

  103. Penzenstadler, B., Duboc, L., Venters, C.C., Betz, S., Seyff, N., Wnuk, K., Chitchyan, R., Easterbrook, S.M., Becker, C.: Software engineering for sustainability: find the leverage points! IEEE Softw. 35(4), 22–33 (2018). https://doi.org/10.1109/MS.2018.110154908

    Article  Google Scholar 

  104. Penzenstadler, B., Betz, S., Duboc, L., Seyff, N., Porras, J., Oyedeji, S., Brooks, I., Venters, C.C.: Iterative sustainability impact assessment: When to propose? In: 2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS), pp. 5–6 (2021). https://doi.org/10.1109/BoKSS52540.2021.00010

  105. Piroumian, V.: Digital twins: universal interoperability for the digital age. Computer 54(1), 61–69 (2021). https://doi.org/10.1109/MC.2020.3032148

    Article  Google Scholar 

  106. Poels, G., Proper, H.A., Bork, D.: DT4GITM—A vision for a framework for digital twin enabled IT governance. In: 55th Hawaii International Conference on System Sciences, HICSS 2022, Virtual Event / Maui, Hawaii, USA, January 4–7, 2022, ScholarSpace, pp. 1–10 (2022). http://hdl.handle.net/10125/80143

  107. Pratt, V.R.: On the composition of processes. In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Association for Computing Machinery, New York, NY, USA, POPL ’82, pp. 213–223 (1982). https://doi.org/10.1145/582153.582177

  108. Proper, H.A., Bork, D., Poels G.: Towards an ontology-driven approach for digital twin enabled governed IT management. In: Joint Proceedings of the Semantics co-located events: Poster &Demo track and Workshop on Ontology-Driven Conceptual Modelling of Digital Twins co-located with Semantics 2021, Amsterdam and Online, September 6-9, 2021, CEUR-WS.org, CEUR Workshop Proceedings, vol. 2941, https://ceur-ws.org/Vol-2941/paper18.pdf (2021)

  109. Razavian, M., Procaccianti, G., Tamburri, D.: Four-dimensional sustainable e-services. In: Proceedings of ENVIROINFO 2014, Shaker-Verlag AG, enviroInfo—ICT for Energy Efficiency ; Conference date: 01-01-2014 Through 01-01-2014 (2014)

  110. Reike, D., Vermeulen, W.J., Witjes, S.: The circular economy: new or refurbished as CE 3.0?—exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 135, 246–264 (2018). https://doi.org/10.1016/j.resconrec.2017.08.027

    Article  Google Scholar 

  111. Renaud, F.G., Zhou, X., Bosher, L., Barrett, B., Huang, S.: Synergies and trade-offs between sustainable development goals and targets: innovative approaches and new perspectives. Sustain. Sci. 17(4), 1317–1322 (2022). https://doi.org/10.1007/s11625-022-01209-9

    Article  Google Scholar 

  112. Richardson, M.: Design for reuse: integrating upcycling into industrial design practice. In: International Conference on Remanufacturing, pp. 1–13 (2011)

  113. Rittel, H.: Wicked problems. Management Science (December 1967), vol 4(14) (1967)

  114. Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A.S., Maharaj, T., Sherwin, E.D., Mukkavilli, S.K., Kording, K.P., Gomes, C.P., Ng, A.Y., Hassabis, D., Platt, J.C., Creutzig, F., Chayes, J., Bengio, Y.: Tackling climate change with machine learning. ACM Comput. Surv. (2022). https://doi.org/10.1145/3485128

    Article  Google Scholar 

  115. Rout, T.P., Emam, K.E., Fusani, M., Goldenson, D., Jung, H.: SPICE in retrospect: developing a standard for process assessment. J. Syst. Softw. 80(9), 1483–1493 (2007). https://doi.org/10.1016/j.jss.2007.01.045

    Article  Google Scholar 

  116. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)

    Article  Google Scholar 

  117. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2019). https://doi.org/10.1007/s10270-017-0639-0

    Article  Google Scholar 

  118. Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: a survey. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1019–1034 (2015). https://doi.org/10.1109/TNNLS.2014.2330900

    Article  MathSciNet  Google Scholar 

  119. Sharpe, R.G., Goodall, P.A., Neal, A.D., Conway, P.P., West, A.A.: Cyber-physical systems in the re-use, refurbishment and recycling of used electrical and electronic equipment. J. Clean. Prod. 170, 351–361 (2018). https://doi.org/10.1016/j.jclepro.2017.09.087

    Article  Google Scholar 

  120. Shen, S.C., Khare, E., Lee, N.A., Saad, M.K., Kaplan, D.L., Buehler, M.J.: Computational design and manufacturing of sustainable materials through first-principles and materiomics. Chem. Rev. 123(5), 2242–2275 (2023). https://doi.org/10.1021/acs.chemrev.2c00479

    Article  Google Scholar 

  121. Singh, V., Willcox, K.E.: Engineering design with digital thread. AIAA J. 56(11), 4515–4528 (2018). https://doi.org/10.2514/1.J057255

    Article  Google Scholar 

  122. So, D., Le, Q., Liang, C.: The evolved transformer. In: Proceedings of the 36th International Conference on Machine Learning, PMLR, Proceedings of Machine Learning Research, vol. 97, pp. 5877–5886 (2019). https://proceedings.mlr.press/v97/so19a.html

  123. Sparks, D., Badurdeen, F.: Combining sustainable value stream mapping and simulation to assess supply chain performance. In: IIE Annual Conference Proceedings, pp. 1847–1856 (2014). https://www.proquest.com/scholarly-journals/combining-sustainable-value-stream-mapping/docview/1622307701/se-2

  124. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. CoRR http://arxiv.org/abs/1906.02243 (2019)

  125. Tasdemir, C., Gazo, R.: A systematic literature review for better understanding of lean driven sustainability. Sustainability (2018). https://doi.org/10.3390/su10072544

    Article  Google Scholar 

  126. The Wall Street Journal Online (2019) Unilever Uses Virtual Factories to Tune Up Its Supply Chain. https://partners.wsj.com/samsung/technology-speed-of-change/unilever-uses-virtual-factories-to-tune-up-its-supply-chain/, Accessed: 2023-12-13

  127. Tzachor, A., Sabri, S., Richards, C.E., Rajabifard, A., Acuto, M.: Potential and limitations of digital twins to achieve the sustainable development goals. Nat. Sustain. 5(10), 822–829 (2022). https://doi.org/10.1038/s41893-022-00923-7

    Article  Google Scholar 

  128. United Nations General Assembly (2015) SDG 7—Ensure access to affordable, reliable, sustainable and modern energy for all. https://sdgs.un.org/goals/goal7, Accessed: 2023-12-13

  129. Van Acker, B., Denil, J., De Cock, A., Vangheluwe, H., Challenger, M.: Knowledge base development and application processes applied on product-assembly co-design. In: 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 327–335 (2021). https://doi.org/10.1109/MODELS-C53483.2021.00055

  130. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003). https://doi.org/10.1023/A:1022883727209

    Article  Google Scholar 

  131. van der Aalst, W.M.P., Hinz, O., Weinhardt, C.: Sustainable systems engineering. Bus. Inf. Syst. Eng. 65(1), 1–6 (2023). https://doi.org/10.1007/s12599-022-00784-6

    Article  Google Scholar 

  132. Vangheluwe, H., de Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: Proceedings of the AIS2002 Conference (AI, Simulation and Planning in High Autonomy Systems), April 2002, Lisboa, Portugal/Barros, Fernando [edit.]; et al., pp. 9–20 (2002)

  133. Venters, C.C., Lau, L., Griffiths, M.K., Holmes, V., Ward, R.R., Jay, C., Dibsdale, C.E., Xu, J.: The blind men and the elephant: towards an empirical evaluation framework for software sustainability. J. Open Res. Softw. (2014). https://doi.org/10.5334/jors.ao

    Article  Google Scholar 

  134. Venters, C.C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Nakagawa, E.Y., Becker, C., Carrillo, C.: Software sustainability: research and practice from a software architecture viewpoint. J. Syst. Softw. 138, 174–188 (2018). https://doi.org/10.1016/j.jss.2017.12.026

    Article  Google Scholar 

  135. Verdecchia, R., Sallou, J., Cruz, L.: A systematic review of green AI. WIREs Data Min. Knowl. Discov. 13, e1507 (2023)

    Article  Google Scholar 

  136. Wegener, C.: Upcycling, pp. 181–188. Palgrave Macmillan UK, London (2016). https://doi.org/10.1057/9781137511805_22

    Book  Google Scholar 

  137. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  138. West, T.D., Pyster, A.: Untangling the digital thread: the challenge and promise of model-based engineering in defense acquisition. Insight 18(2), 45–55 (2015). https://doi.org/10.1002/inst.12022

    Article  Google Scholar 

  139. Williams, I.D., Blyth, M.: Autogeddon or autoheaven: environmental and social effects of the automotive industry from launch to present. Sci. Total Environ. 858, 159987 (2023). https://doi.org/10.1016/j.scitotenv.2022.159987

    Article  Google Scholar 

  140. Winans, K., Kendall, A., Deng, H.: The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 68, 825–833 (2017). https://doi.org/10.1016/j.rser.2016.09.123

    Article  Google Scholar 

  141. World Economic Forum (2019) A new circular vision for electronics: Time for a global reboot. Tech. rep., https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

  142. van Wynsberghe, A.: Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 1(3), 213–218 (2021). https://doi.org/10.1007/s43681-021-00043-6

    Article  Google Scholar 

  143. Xie, M., Jean, N., Burke, .M, Lobell, D., Ermon, S.: Transfer learning from deep features for remote sensing and poverty mapping. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI Press, AAAI’16, pp. 3929–3935 (2016). https://doi.org/10.1609/aaai.v30i1.9906

  144. Zhang, H., Calvo-Amodio, J., Haapala, K.R.: A conceptual model for assisting sustainable manufacturing through system dynamics. J. Manuf. Syst. 32(4), 543–549 (2013). https://doi.org/10.1016/j.jmsy.2013.05.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan David.

Additional information

Communicated by Bernhard Rumpe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, I., Bork, D. & Kappel, G. Circular systems engineering. Softw Syst Model 23, 269–283 (2024). https://doi.org/10.1007/s10270-024-01154-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-024-01154-4

Keywords

Navigation