Skip to main content

Advertisement

Log in

Deleterious effect of chronic high-dose ethanol intake on biomechanical bone properties and periodontal status

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To evaluate the effect of high-graduation chronic ethanol (EtOH) intake on bone and periodontal tissues of rats. Male Wistar rats (250 g) were divided into two groups of n = 12 each one. EtOH (5 ml of 3 g/kg) was administered to the experimental group by gastric gavage twice a day for 20 days and the control group received water under the same conditions. The rats were euthanized and used to perform biochemical determination in plasma and gingival tissue, and histological and biomechanical studies in the femur and mandibular tissues. Alcohol increased both TNFα (p < 0.01) and PGE2 (p < 0.05) in plasma and gingiva (p < 0.05) as compared to controls. In addition, EtOH increased the alveolar bone loss as evidenced by the increased distance between the cement enamel junction and the alveolar crest (p < 0.01), the lower % of interradicular bone expressed as bone area/total area (B.Ar/T.Ar, p < 0.05) and the larger periodontal space (p < 0.05), as compared to controls. Likewise, the mandibular microtomographic analysis in alcoholized rats revealed a lower % of interradicular bone volume/total volume (BV/TV, p < 0.05), greater trabecular separation (p < 0.05) and greater % trabecular porosity (p < 0.05) than controls. No biomechanical alteration was observed in lower jaws, while the femur of alcoholized rats presented a decrease in the structural bone properties (p < 0.001), as a systemic consequence of deterioration of the diaphyseal architecture (p < 0.01) without changes in material properties. The consumption of high doses of alcohol produces deleterious effects on periodontal tissues that could be due not only to local but also systemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maurel DB, Boisseau N, Benhamou CL, Jaffre C. Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int. 2012;23(1):1–16.

    Article  PubMed  Google Scholar 

  2. Tezal M, Grossi SG, Ho AW, Genco RJ. Alcohol consumption and periodontal disease: the third national health and nutrition examination survey. J Clin Periodontol. 2004;31(7):484–8.

    Article  PubMed  Google Scholar 

  3. Pitiphat W, Merchant AT, Rimm EB, Joshipura KJ. Alcohol consumption increases periodontitis risk. J Dent Res. 2003;82:509–13.

    Article  PubMed  Google Scholar 

  4. Tezal M, Grossi SG, Ho AW, Genco RJ. The effect of alcohol consumption on periodontal disease. J Periodontol. 2001;72(2):183–9.

    Article  PubMed  Google Scholar 

  5. Shimazaki Y, Saito T, Kiyohara Y, Kato I, Kubo M, Lida M, Yamashita Y. Relationship between drinking and periodontitis: the Hisayama study. J Periodontol. 2005;76(9):1534–41.

    Article  PubMed  Google Scholar 

  6. Schuckit MA. Alcohol-use disorders. Lancet. 2009. https://doi.org/10.1016/S0140-6736(09)60009-X.

    Article  PubMed  Google Scholar 

  7. Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z. To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr. 2002. https://doi.org/10.1080/07315724.2002.10719252.

    Article  PubMed  Google Scholar 

  8. Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, Cupples LA, Kiel DP. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr. 2009. https://doi.org/10.3945/ajcn.2008.26765.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dyer SA, Buckendahl P, Sampson HW. Alcohol consumption inhibits osteoblastic cell proliferation and activity in vivo. Alcohol. 1998;16:337–41.

    Article  PubMed  Google Scholar 

  10. Turner RT, Kidder LS, Kennedy A, Evans GL, Sibonga JD. Moderate alcohol consumption suppresses bone turnover in adult female rats. J Bone Miner Res. 2001;16:589–94.

    Article  PubMed  Google Scholar 

  11. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58:424–30.

    PubMed  PubMed Central  Google Scholar 

  12. Maurel DB, Pallu S, Jaffré C, Fazzalari NL, Boisseau N, Uzbekov R, Benhamou CL, Rochefort GY. Osteocyte apoptosis and lipid infiltration as mechanisms of alcohol-induced bone loss. Alcohol Alcohol. 2012;47(4):413–22.

    Article  PubMed  Google Scholar 

  13. Irie K, Tomofuji T, Tamaki N, Sanbe T, Ekuni D, Azuma T, Maruyama T, Yamamoto T. Effects of ethanol consumption on periodontal inflammation in rats. J Dent Res. 2008;87(5):456–60.

    Article  PubMed  Google Scholar 

  14. Dantas AM, Mohn CE, Burdet B, Zorrilla Zubilete M, Mandalunis PM, Elverdin JC, Fernández-Solari J. Ethanol consumption enhances periodontal inflammatory markers in rats. Arch Oral Biol. 2012;57(9):1211–7.

    Article  PubMed  Google Scholar 

  15. Proctor GB, Shori DK, Preedy VR. Protein synthesis in the major salivary glands of the rat and the effects of re-feeding and acute ethanol injection. Arch Oral Biol. 1993. https://doi.org/10.1016/0003-9969(93)90110-8.

    Article  PubMed  Google Scholar 

  16. Prestifilippo JP, Fernández-Solari J, Medina V, Rettori V, Elverdin JC. Role of the endocannabinoid system in ethanol-induced inhibition of salivary secretion. Alcohol Alcohol. 2009;44(5):443–8.

    Article  PubMed  Google Scholar 

  17. Surkin PN, Ossola CA, Mohn CE, Elverdin JC, Fernandez-Solari J. Chronic alcohol consumption alters periodontal health in rats. Alcohol Clin Exp Res. 2014;38(7):2001–7.

    Article  PubMed  Google Scholar 

  18. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); (2011) Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/ doi: https://doi.org/10.17226/12910

  19. Mohn CE, Fernandez-Solari J, De Laurentiis A, Bornstein SR, Ehrhart-Bornstein M, Rettori V. Adrenal gland responses to lipopolysaccharide after stress and ethanol administration in male rats. Stress. 2011;14(2):216–26.

    Article  PubMed  Google Scholar 

  20. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993. https://doi.org/10.1016/8756-3282(93)90081-k.

    Article  PubMed  Google Scholar 

  21. Crawford JM, Taubman MA, Smith DJ. The natural history of periodontal bone loss in germfree and gnotobiotic rats infected with periodontopathic microorganisms. J Periodontal Res. 1978;13:316–25.

    Article  PubMed  Google Scholar 

  22. Ossola CA, Surkin PN, Mohn CE, Elverdin JC, Fernández-Solari J. Anti-inflammatory and osteoprotective effects of cannabinoid-2 receptor agonist HU-308 in a rat model of lipopolysaccharide-induced periodontitis. J Periodontol. 2016;87(6):725–34.

    Article  PubMed  Google Scholar 

  23. Frost HM. Bone mass and the mechanostat A proposal. Anat Rec. 1966;219:1–9.

    Article  Google Scholar 

  24. Lee JI, Burckart GJ. Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol. 1998. https://doi.org/10.1177/009127009803801101.

    Article  PubMed  Google Scholar 

  25. Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z. Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem. 2001;83:70–83.

    Article  PubMed  Google Scholar 

  26. Thomson BM, Mundy GR, Chambers TJ. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987;138:775–9.

    Article  PubMed  Google Scholar 

  27. König A, Muhlbauer RC, Fleisch H. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H] tetracycline excretion from prelabeled mice. J Bone Miner Res. 1988;3:621–7.

    Article  PubMed  Google Scholar 

  28. Bingham CO 3rd. The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. J Rheumatol Suppl. 2002;65:3–9.

    PubMed  Google Scholar 

  29. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKLRANK interaction. J Exp Med. 2000;191:275–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Steeve KT, Marc P, Sandrine T, Dominique H, Yannick F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15:49–60.

    Article  Google Scholar 

  31. Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T. Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem. 1998;273:8799–805.

    Article  PubMed  Google Scholar 

  32. Lorenzo JA, Naprta A, Rao Y, Alander C, Glaccum M, Widmer M, et al. Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology. 1998;139:3022–5.

    Article  PubMed  Google Scholar 

  33. McClain C, Hill D, Schmidt J, Diehl AM. Cytokines and alcoholic liver disease. Semin Liver Dis. 1993;13(2):170–82.

    Article  PubMed  Google Scholar 

  34. Offenbacher S, Heasman PA, Collins JG. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol. 1993;64:432–44.

    Article  PubMed  Google Scholar 

  35. Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996. https://doi.org/10.1902/annals.1996.1.1.821.

    Article  PubMed  Google Scholar 

  36. Trevisiol CH, Turner RT, Pfaff JE, Hunter JC, Menagh PJ, Hardin K, Ho E, Iwaniec UT. Impaired osteoinduction in a rat model for chronic alcohol abuse. Bone. 2007;41(2):175–80.

    Article  PubMed  Google Scholar 

  37. Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, Jain A, Gao B, Chai Y, Yang M, Wang X, Deng R, Wang L, Cao Y, Ni S, Liu S, Yuan W, Chen H, Dong X, Guan Y, Yang H, Cao X. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10(1):181. https://doi.org/10.1038/s41467-018-08097-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sampson HW, Perks N, Champney TH, DeFee B 2nd. Alcohol consumption inhibits bone growth and development in young actively growing rats. Alcohol Clin Exp Res. 1996;20:1375–84.

    Article  PubMed  Google Scholar 

  39. Messingham KAN, Faunce DE, Kovacs EJ. Alcohol, injury, and cellular immunity. Alcohol. 2002;28:137–49.

    Article  PubMed  Google Scholar 

  40. Pavia CS, Mothe M. Kavanagh M Influence of alcohol on antimicrobial immunity. Biomed Pharmacother. 2004;58(2):84–9.

    Article  PubMed  Google Scholar 

  41. Lieber CS. Relationships between nutrition, alcohol use, and liver disease. Alcohol Res Health. 2003;27(3):220–31.

    PubMed  PubMed Central  Google Scholar 

  42. Hogan HA, Argueta F, Moe L, Nguyen LP, Sampson HW. Adult-onset alcohol consumption induces osteopenia in female rats. Alcohol Clin Exp Res. 2001;25(5):746–54.

    PubMed  Google Scholar 

  43. Hefferan TE, Kennedy AM, Evans GL, Turner RT. Disuse exaggerates the detrimental effects of alcohol on cortical bone. Alcohol Clin Exp Res. 2003;27(1):111–7.

    Article  PubMed  Google Scholar 

  44. Vacas MI, Amer M, Chiarenza AP, Luchelli MA, Mandalunis PM, Elverdin JC. Influence of submandibulectomy on alveolar bone loss in rats. J Periodontol. 2008;79(6):1075–80.

    Article  PubMed  Google Scholar 

  45. Turner RT. Skeletal response to alcohol. Alcohol Clin Exp Res. 2000;24:1693–701.

    Article  PubMed  Google Scholar 

  46. Hoidrup S, Gronbaek M, Gottschau A, Lauritzen JB, Schroll M. Alcohol intake, beverage preference, and risk of hip fracture in men and women. Copenhagen Centre for Prospective Population Studies. Am J Epidemiol. 1999;149:993–1001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the University of Buenos Aires (UBACYT) and the National Council for Scientific and Technical Research (CONICET).

Funding

The study was supported by research grants PIP CONICET N8 076 from the National Council for Scientific and Technological Research (Argentina), and UBACYT 20020130200010BA and 20020130100285BA of the University of Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Mohn.

Ethics declarations

Conflict of interest

No competing financial interests or conflicts of interest exist for any of the authors of the present article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohn, C., Troncoso, G., Ossola, C. et al. Deleterious effect of chronic high-dose ethanol intake on biomechanical bone properties and periodontal status. Odontology (2023). https://doi.org/10.1007/s10266-023-00872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-023-00872-3

Keywords

Navigation