Skip to main content

Advertisement

Log in

TiO2 nanotube-based nanotechnology applied to high-viscosity conventional glass-ionomer cement: ultrastructural analyses and physicochemical characterization

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study characterized TiO2 nanotube (TiO2-nt) ultrastructure and morphology, and the physicochemical impact on high-viscosity conventional glass-ionomer cement (GIC). TiO2-nt was synthesized by the alkaline method (n = 3), assessed by scanning (SEM) and transmission electron microscope (TEM), and was added (3%, 5%, 7%—in weight) to KM (Ketac Molar EasyMix™). Analyses included: SEM; Energy-dispersive spectroscopy (EDS); Raman spectroscopy (RAMAN); Setting time with Gillmore needles (ST); Color (Co); Radiopacity (XR); Water sorption (WS); and solubility (SO). Quantitative data were submitted to ANOVA and Tukey’s tests (chr = 0.05). External and internal TiO2-nt diameters were 11 ± 2 nm and 6 ± 0 nm, respectively. Data analyses showed: (i) TiO2-nt present into KM matrix, with a concentration-dependent increase of Ti levels into KM, (ii) physical interaction between KM and TiO2-nt, (iii) longer initial ST for the 7% group compared to KM and 3% groups (p ≤ 0.01), (iv) decreased luminosity and yellowness for the 5% and 7% groups, (v) 36% greater radiopacity for the 5% group compared to enamel, dentin, and KM, and (vi) lower SO values for the 5% group, with no significant differences on WS across the groups. TiO2-nt displayed physical interaction with KM matrix, and also modified SO, XR and Co, without affecting ST. This study provides information on the potential impact of TiO2-nt on GIC performance. TiO2-nt may be proposed to boost confidence among dental surgeons in terms of GIC’s handling characteristics, success rate and differential diagnostic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available form the corresponding author os reasonable request.

References

  1. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent. 1972;132(4):133–5. https://doi.org/10.1038/sj.bdj.4802810.

    Article  Google Scholar 

  2. Anusavice KJ, Shen C, Rawls HR. Phillip’s science of dental materials. 12th ed. St. Louis: Elsevier; 2013.

    Google Scholar 

  3. Tonmukayakul U, Arrow P. Cost-effectiveness analysis of the atraumatic restorative treatment-based approach to managing early childhood caries. Community Dent Oral Epidemiol. 2017;45(1):92–100. https://doi.org/10.1111/cdoe.12265.

    Article  PubMed  Google Scholar 

  4. Mustafa HA, Soares AP, Paris S, Elhennawy K, Zaslansky P. The forgotten merits of GIC restorations: a systematic review. Clin Oral Invest. 2020;24(7):2189–201. https://doi.org/10.1007/s00784-020-03334-0.

    Article  Google Scholar 

  5. de Amorim RG, Frencken JE, Raggio DP, Chen X, Hu X, Leal SC. Survival percentages of atraumatic restorative treatment (ART) restorations and sealants in posterior teeth: an updated systematic review and meta-analysis. Clin Oral Investig. 2018;22(8):2703–25. https://doi.org/10.1007/s00784-018-2625-5.

    Article  PubMed  Google Scholar 

  6. Mese A, Burrow MF, Tyas MJ. Sorption and solubility of luting cements in different solutions. Dent Mater J. 2008;27(5):702–9. https://doi.org/10.4012/dmj.27.702.

    Article  PubMed  Google Scholar 

  7. Nicholson JW. Maturation processes in glass-ionomer dental cements. Acta Biomater Odontol Scand. 2018;4(1):63–71. https://doi.org/10.1080/23337931.2018.1497492.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nicholson JW, Coleman NJ, Sidhu SK. Kinetics of ion release from a conventional glass ionomer cement. J Mater Sci Mater Med. 2021;32:30. https://doi.org/10.1007/s10856-021-06501-1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Menezes-Silva R, Cabral RN, Pascotto RC, Borges AFS, Martins CC, Navarro MFL, Sidhu SK, Leal SC. Mechanical and optical properties of conventional restorative glass-ionomer cements—a systematic review. J Appl Oral Sci. 2019;27: e2018357. https://doi.org/10.1590/1678-7757-2018-0357.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N. Advances in dental material through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol. 2015;33(11):621–36. https://doi.org/10.1016/j.tibtech.2015.09.005.

    Article  PubMed  Google Scholar 

  11. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941–65. https://doi.org/10.2147/IJN.S134526.

    Article  Google Scholar 

  12. Sajjad A, Wan Bakar WZW, Mohamad D, Kannan TP. Various recent reinforcement phase incorporations and modifications in glass ionomer powder compositions: a comprehensive review. J Int Oral Health. 2018;10(4):161–7. https://doi.org/10.4103/jioh.jioh_160_18.

    Article  Google Scholar 

  13. Moheet IA, Luddin N, Rahman IA, Kannan TP, Ghani NRNA, Masudi SM. Modifications of glass ionomer cement powder by addition of recently fabricated nano-fillers and their effect on the properties: a review. Eur J Dent. 2019;13(3):470–7. https://doi.org/10.1055/s-0039-1693524.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao J, Xie D. Effect of nanoparticles on wear resistance and surface hardness of a dental glass-ionomer cement. J Compos Mat. 2009;43:2739–52. https://doi.org/10.1177/0021998309345341.

    Article  Google Scholar 

  15. Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589–98. https://doi.org/10.1016/j.jdent.2011.05.006.

    Article  PubMed  Google Scholar 

  16. El-Negoly SA, El-Fallal AA, El-Sherbiny IM. A new modification for improving shear bond strength and other mechanical properties of conventional glass-ionomer restorative materials. J Adhes Dent. 2014;16(1):41–7. https://doi.org/10.3290/j.jad.a30541.

    Article  PubMed  Google Scholar 

  17. Cibim DD, Saito MT, Giovani PA, Borges AFS, Pecorari VGA, Gomes OP, Lisboa-Filho PN, Nociti-Junior FH, Puppin-Rontani RM, Kantovitz KR. Novel nanotechnology of TiO2 improves physical-chemical and biological properties of glass ionomer cement. Int J Biomater. 2017;2017:7123919. https://doi.org/10.1155/2017/7123919.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kantovitz KR, Fernandes FP, Feitosa IV, Lazzarini MO, Denucci GC, Gomes OP, Giovani PA, Moreira KMS, Pecorari VGA, Borges AFS, Nociti-Jr FH, Basting RT, Lisboa-Filho PN, Puppin-Rontani RM. TiO2 nanotubes improve physico-mechanical properties of glass ionomer cement. Dent Mater. 2020;36(3):e85–92. https://doi.org/10.1016/j.dental.2020.01.018.

    Article  PubMed  Google Scholar 

  19. Meng X, Banis MN, Cheng D, Li X, Zhang Y, Li R, Abou-Rachid H, Sun X. Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Appl Surf Sci. 2013;266:132–40. https://doi.org/10.1016/j.apsusc.2012.11.116.

    Article  Google Scholar 

  20. Araújo IJS, Ricardo MG, Gomes OP, Giovani PA, Puppin-Rontani J, Pecorari VA, Martinez EF, Napimoga MH, Nociti Junior FH, Puppin-Rontani RM, Lisboa-Filho PN, Kantovitz KR. Titanium dioxide nanotubes added to glass ionomer cements affect S mutans viability and mechanisms of virulence. Braz Oral Res. 2021;35:62. https://doi.org/10.1590/1807-3107bor-2021.

    Article  Google Scholar 

  21. Arruda LB, Santos CM, Orlandi MO, Schreiner WH, Lisboa-Filho PN. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceram Int. 2015;41:2884–91. https://doi.org/10.1016/j.ceramint.2014.10.113.

    Article  Google Scholar 

  22. ISO 9917–2: Dentistry—Water-based cements—Part 2: Resin-modified cements. Geneva, Switzerland: International Organization for Standardization; 2010.

  23. Carlos NR, Pinto AVD, Amaral FLB, França FMG, Turssi CP, Basting RT. Influence of staining solutions on color change and enamel surface properties during at-home and in-office dental bleaching: an in situ study. Oper Dent. 2019;44(9):595–608. https://doi.org/10.2341/18-236-C.

    Article  PubMed  Google Scholar 

  24. ISO 13116 (2014) Dentistry—test method for determining radio-opacity of materials. Geneva: Switzerland; International Organization for Standardization

  25. ISO 4049 (2019) Dentistry Polymer Based Restorative Materials. Geneva: Switzerland; International Organization for Standardization

  26. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891–959. https://doi.org/10.1021/cr0500535.

    Article  PubMed  Google Scholar 

  27. Wypych A, Bobowska I, Tracz M, Opasinska A, Kadlubowski S, Krzywania-Kaliszewska A, Grobelny J, Wojciechowski P. Dieletric Properties and characterization of titanium dioxide obtained by different chemistry methods. J Nanomater. 2014. https://doi.org/10.1155/2014/124814.

    Article  Google Scholar 

  28. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem. 2011;50(13):2904–39. https://doi.org/10.1002/anie.201001374.

    Article  Google Scholar 

  29. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2011;46:855–74. https://doi.org/10.1007/s10853-010-5113-0.

    Article  Google Scholar 

  30. Young AM, Sherpa A, Pearson G, Schottlander B, Waters DN. Use of Raman spectroscopy in the characterization of the acid-base reaction in glass-ionomer cements. Biomaterials. 2000;21(19):1971–9. https://doi.org/10.1016/s0142-9612(00)00081-8.

    Article  PubMed  Google Scholar 

  31. Tadjiev D, Hand RJ. Surface hydration and nanoindentation of silicate glasses. J Non Cryst Solids. 2010;356(2):102–8. https://doi.org/10.1016/j.jnoncrysol.2009.10.005.

    Article  Google Scholar 

  32. Fareed MA, Stamboulis A. Nanoclay addition to conventional glass-ionomer cements: influence on properties. Eur J Dent. 2014;8(4):456–63. https://doi.org/10.4103/1305-7456.143619.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamakami SA, Ubaldini ALM, Sato F, Medina Neto A, Pascotto RC, Baesso ML. Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. J Appl Oral Sci. 2018;26: e20170384. https://doi.org/10.1590/1678-7757-2017-0384.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21:1319–28.

    Article  Google Scholar 

  35. De Caluwé T, Vercruysse CWJ, Fraeyman S, Verbeeck RMH. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent Mater. 2014;30(9):1029–38. https://doi.org/10.1016/j.dental.2014.06.003.

    Article  PubMed  Google Scholar 

  36. Lin-Vien D, Colthup NB, Fateley WG, Gasselli JG. The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego: Academic Press; 1991.

    Google Scholar 

  37. Ana ID, Matsuya S, Ohta M, Ishikawa K. Effects of added bioactive glass on the setting and mechanical properties of resin-modified glass ionomer cement. Biomaterials. 2003;24(18):3061–7. https://doi.org/10.1016/s0142-9612(03)00151-0.

    Article  PubMed  Google Scholar 

  38. Dickey B, Price R, Boyd D. Evidence of a complex species controlling the setting reaction of glass ionomer cements. Dent Mat. 2016;32(4):596–605. https://doi.org/10.1016/j.dental.2016.01.012.

    Article  Google Scholar 

  39. Prentice LH, Tyas MJ, Burrow MF. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater. 2006;22(8):746–51. https://doi.org/10.1016/j.dental.2005.11.001.

    Article  PubMed  Google Scholar 

  40. Shahid S, Hassan U, Billington RW, Hill RG, Anderson P. Glass ionomer cements: effect of strontium substitution on esthetics, radiopacity and fluoride release. Dent Mater. 2014;30(3):308–13. https://doi.org/10.1016/j.dental.2013.12.003.

    Article  PubMed  Google Scholar 

  41. Williams JA, Billington RW. The radiopacity of glass ionomer dental materials. J Oral Rehabil. 1990;17(3):245–8. https://doi.org/10.1111/j.1365-2842.1990.tb00005.x.

    Article  PubMed  Google Scholar 

  42. Garcia IM, Leitune VCB, Balbinot GS, Samuel SMW, Collares FM. Influence of niobium pentoxide addition on the properties of glass ionomer cements. Acta Biomater Odontol Scand. 2016;2(1):138–43. https://doi.org/10.1080/23337931.2016.1239182.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MAP. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dent Maxillofacial Radiol. 2013;42(2):20120153. https://doi.org/10.1259/dmfr.20120153.

    Article  Google Scholar 

  44. Carvalho EV, de Paula DM, Andrade Neto DM, Costa LS, Dias DF, Feitosa VP, Fechine PBA. Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J Mech Behav Biomed Mater. 2020;101:103447. https://doi.org/10.1016/j.jmbbm.2019.103447.

    Article  PubMed  Google Scholar 

  45. Fonseca RB, Branco CA, Quagliatto PS, Gonçalves LS, Soares CJ, Carlo HL, Correr-Sobrinho L. Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements. J Appl Oral Sci. 2010;18:577–84. https://doi.org/10.1590/s1678-775720100006000008.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hitij T, Fidler A. Radiopacity of dental restorative materials. Clin Oral Investig. 2013;17(4):1167–77. https://doi.org/10.10007/s00784-012-0797-y.

    Article  PubMed  Google Scholar 

  47. Yasa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci. 2015;57(2):79–85. https://doi.org/10.2334/josnusd.57.79.

    Article  PubMed  Google Scholar 

  48. Qasim SS, Bakr DK, Rasheed DH. Evaluating the effect of addition of titanium dioxide nanoparticle on some physical properties of flowable composite resin. Ind J Forens Med Toxic. 2021;14:2. https://doi.org/10.37506/ijfmt.v14i2.3337.

    Article  Google Scholar 

  49. Ayre WN, Scully N, Elford C, Evans BA, Rowe W, Rowlands J, Mitha R, Malpas P, Manti P, Holt C, Morgan-Jones R, Birchall JC, Denyer SP, Evans SL. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide. J Biomater Appl. 2021;35(10):1235–52. https://doi.org/10.1177/0885328220983797.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Almaroof A, Ali A, Mannocci F, Deb S. Semi-interpenetrating network composites reinforced with Kevlar fibers for dental post fabrication. Dent Mater J. 2019;38(4):511–21. https://doi.org/10.4012/dmj.2018-040.

    Article  PubMed  Google Scholar 

  51. Berry HM. Cervical burnout and Mach band: two shadows of doubt in radiologic interpretation of carious lesions. J Am Dent Assoc. 1983;106(5):622–5. https://doi.org/10.14219/jada.archive.1983.0109.

    Article  PubMed  Google Scholar 

  52. Sava S, Colgecen O, Yasa B, Kucukyilmaz E. Color stability, roughness, and water sorption/solubility of glass ionomer-based restorative materials. Niger J Clin Pract. 2019;22(6):824–32. https://doi.org/10.5103/njcp_592_18.

    Article  Google Scholar 

  53. Singer L, Bierbaum G, Kehl K, Bourauel C. Evaluation of the flexural strength, water sorption, and solubility of a glass ionomer dental cement modified using phytomedicine. Materials (Basel). 2020;13(23):5352. https://doi.org/10.3390/ma13235352.

    Article  PubMed  Google Scholar 

  54. Gemalmaz D, Yoruc B, Ozcan M, Alkumru HN. Effect of early water contact on solubility of glass ionomer luting cements. J Prosthet Dent. 1998;80:474–8. https://doi.org/10.1016/s0022-3913(98)70014-9.

    Article  PubMed  Google Scholar 

  55. Carvalho-Júnior JR, Guimarães LF, Correr-Sobrinho L, Pécora JD, Sousa-Neto MD. Evaluation of solubility, disintegration, and dimensional alterations of a glass ionomer root canal sealer. Braz Dent J. 2003;14:114–8. https://doi.org/10.1590/S0103-64402003000200008.

    Article  PubMed  Google Scholar 

  56. Bhatia HP, Singh S, Sood S, Sharma N. A comparative evaluation of sorption, solubility, and compressive strength of three different glass ionomer cements in artificial saliva: an in vitro study. Int J Clin Pediatr Dent. 2017;10:49–54. https://doi.org/10.5005/jp-journals-10005-1407.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Galal RS, El Kadi AS, Ghoneim MN. Surface roughness and solubility of a nano-filled resin modified glass-ionomer (in vitro study). Alex Dent J. 2018;43(2):123–7. https://doi.org/10.21608/ADJALEXU.2018.57757.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the assistance of the technicians at the Dental Materials Laboratories at Faculdade São Leopoldo Mandic and Piracicaba Dental School, UNICAMP, particularly Ms. Aline Regina Barbosa Santos, Ms. Thalita Regina Reck, and Mrs. Marcos Blanco Cangiani, and Ms. Cristina Martorana for assistance in text editing. We are also grateful for the support of the ideas, discussion, and cooperation of Regina Maria Puppin-Rontani, Orisson Ponce, Kelly Maria Silva Moreira, Priscila Alves Giovani, Isaac de Souza Araújo, Daiane Cristina Peruzzo, Fabiana Mantovani Gomes Franca and Vanessa Arias Pecorari. This research was supported by the São Paulo Research Support Foundation [FAPESP, Grant #16/13786-0; #19/14078-8], and the Brazilian National Council for Scientific and Technological Development [CNPq, PIBIC Scholarship 2018-19]. The authors declare that they have no ties to any company of any nature related to this research.

Funding

This research was supported by the São Paulo Research Support Foundation [FAPESP, Grant #16/13786-0; #19/14078-8], and the Brazilian National Council for Scientific and Technological Development [CNPq, PIBIC Scholarship 2018-19].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization [KRK, PNLF]. Methodology [KRK, NRC, IAPSS. CB, BCC, ILK, FKPdF, PNLF]. Investigation [NRC, BCC, CB, ILK]. Data curation & Validation [NRC, BCC, ILK, RTB, PNLF]. Visualization [KRK, FHN]. Writing—original draft preparation [IAPSS, BCC, ILK, FHN, RTB, FKPdF]. Writing—reviewing and editing [KRK, FHN, RTB, PNLF]. Resources [PNLF]. Scholar shipment [KRK, CB]. Funding acquisition [KRK, FHN]. Project administration [KRK]. Co-supervision [PNLF]. Supervision [KRK]

Corresponding author

Correspondence to Kamila Rosamilia Kantovitz.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interests concerning this investigation.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantovitz, K.R., Carlos, N.R., Silva, I.A.P.S. et al. TiO2 nanotube-based nanotechnology applied to high-viscosity conventional glass-ionomer cement: ultrastructural analyses and physicochemical characterization. Odontology 111, 916–928 (2023). https://doi.org/10.1007/s10266-023-00799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00799-9

Keywords

Navigation