Skip to main content

Advertisement

Log in

Establishing protein expression profiles involved in tooth development using a proteomic approach

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003;116:1647–8. https://doi.org/10.1242/jcs.00410.

    Article  PubMed  Google Scholar 

  2. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone. 1999;25:123–5. https://doi.org/10.1016/s8756-3282(99)00119-2.

    Article  PubMed  Google Scholar 

  3. Vainio S, Karavanova I, Jowett A, Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993;75:45–58.

    Article  PubMed  Google Scholar 

  4. Wang YH, Rutherford B, Upholt WB, Mina M. Effects of BMP-7 on mouse tooth mesenchyme and chick mandibular mesenchyme. Dev Dyn. 1999;216:320–35. https://doi.org/10.1002/(SICI)1097-0177(199912)216:4/5%3c320::AID-DVDY2%3e3.0.CO;2-H.

    Article  PubMed  Google Scholar 

  5. Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998;282:1136–8. https://doi.org/10.1126/science.282.5391.1136.

    Article  PubMed  Google Scholar 

  6. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78:826–34. https://doi.org/10.1177/00220345990780040201.

    Article  PubMed  Google Scholar 

  7. Bei M. Molecular genetics of tooth development. Curr Opin Genet Dev. 2009;19:504–10. https://doi.org/10.1016/j.gde.2009.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kurosaka H, Itoh S, Morita C, Tsujimoto T, Murata Y, Inubushi T, Yamashiro T. Development of dentition: from initiation to occlusion and related diseases. J Oral Biosci. 2022;64:159–64. https://doi.org/10.1016/j.job.2022.02.005.

    Article  PubMed  Google Scholar 

  9. Yoshizaki K, Fukumoto S, Bikle DD, Oda Y. Transcriptional regulation of dental epithelial cells fate. Int J Mol Sci. 2020;21:8952. https://doi.org/10.3390/ijms21238952.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bianchi S, Bernardi S, Belli M, Varvara G, Macchiarelli G. Exposure to persistent organic pollutants during tooth formation: molecular mechanisms and clinical findings. Rev Environ Health. 2020;35:303–10. https://doi.org/10.1515/reveh-2019-0093.

    Article  PubMed  Google Scholar 

  11. Bernardi S, Bianchi S, Bernardi G, Tchorz JP, Attin T, Hellwig E, Karygianni L. Clinical management of fusion in primary mandibular incisors: a systematic literature review. Acta Odontol Scand. 2020;78:417–24. https://doi.org/10.1080/00016357.2020.1734233.

    Article  PubMed  Google Scholar 

  12. Giffoni TCR, Brandt GZ, Rocha IS, Ramos AL, Provenzano MGA, Francasso MLC. Relation of dental anomalies with occlusal alterations in the pediatric patients. Pesqui Bras Odontopediatria Clin Integr. 2019;19:e4026. https://doi.org/10.4034/PBOCI.2019.191.68.13.

    Article  Google Scholar 

  13. Tsai S, Abdelhamid A, Khan MK, Elkarargy A, Widelitz RB, Chuong CM, Wu P. The molecular circuit regulating tooth development in crocodilians. J Dent Res. 2016;95:1501–10. https://doi.org/10.1177/0022034516667724.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Cai W, Lu X, Liu S, Zhao S. RNA-sequencing analyses demonstrate the involvement of canonical transient receptor potential channels in rat tooth germ development. Front Physiol. 2017;8:455. https://doi.org/10.3389/fphys.2017.00455.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiba Y, Saito K, Martin D, Boger ET, Rhodes C, Yoshizaki K, Nakamura T, Yamada A, Morell RJ, Yamada Y, Fukumoto S. Single-cell RNA-sequencing from mouse incisor reveals dental epithelial cell-type specific genes. Front Cell Dev Biol. 2020;8:841. https://doi.org/10.3389/fcell.2020.00841.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, Kuchler U, Zdrilic IV, Vijaykumar A, Balic A, Marangoni P, Klein OD, Neves VCM, Yianni V, Sharpe PT, Harkany T, Metscher BD, Bajénoff M, Mina M, Fried K, Kharchenko PV, Adameyko I. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020;11:4816. https://doi.org/10.1038/s41467-020-18512-7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Magdeldin S, Yamamoto T. Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics. 2012;12:1045–58. https://doi.org/10.1002/pmic.201100550.

    Article  PubMed  PubMed Central  Google Scholar 

  18. García-Vence M, Chantada-Vazquez MDP, Sosa-Fajardo A, Agra R, Barcia de la Iglesia A, Otero-Glez A, García-González M, Cameselle-Teijeiro JM, Nuñez C, Bravo JJ, Bravo SB. Protein extraction from FFPE kidney tissue samples: a review of the literature and characterization of techniques. Front Med (Lausanne). 2021;8:657313. https://doi.org/10.3389/fmed.2021.657313. (eCollection 2021).

    Article  PubMed  Google Scholar 

  19. Zhang Y, Xu B, Kinoshita N, Yoshida Y, Tasaki M, Fujinaka H, Magdeldin S, Yaoita SE, Yamamoto T. Label-free quantitative proteomic analysis reveals strong involvement of complement alternative and terminal pathways in human glomerular sclerotic lesions. J Proteom. 2015;123:89–100. https://doi.org/10.1016/j.jprot.2015.03.024. (Epub 2015 Mar 30).

    Article  Google Scholar 

  20. Harada H, Ohshima H. New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol. 2004;67:1–11. https://doi.org/10.1679/aohc.67.1.

    Article  PubMed  Google Scholar 

  21. Ohshima H, Yoshida S. The relationship between odontoblasts and pulp capillaries in the process of enamel- and cementum-related dentin formation in rat incisors. Cell Tissue Res. 1992;268:51–63. https://doi.org/10.1007/BF00338053.

    Article  PubMed  Google Scholar 

  22. Nakatomi C, Nakatomi M, Saito K, Harada H, Ohshima H. The enamel knot-like structure is eternally maintained in the apical bud of postnatal mouse incisors. Arch Oral Biol. 2015;60:1122–30. https://doi.org/10.1016/j.archoralbio.2015.05.001.

    Article  PubMed  Google Scholar 

  23. Guan SS, Sheu ML, Wu CT, Chiang CK, Liu SH. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy. Sci Rep. 2015;5:14561. https://doi.org/10.1038/srep14561.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wan L, Su L, Xie Y, Liu Y, Wang Y, Wang Z. Protein receptor for activated C kinase 1 is involved in morphine reward in mice. Neuroscience. 2009;161:734–42. https://doi.org/10.1016/j.neuroscience.2009.03.064.

    Article  PubMed  Google Scholar 

  25. Luo J, Li L, Chang B, Zhu Z, Deng F, Hu M, Yu Y, Lu X, Chen Z, Zuo D, Zhou J. Mannan-binding lectin via interaction with cell surface calreticulin promotes senescence of activated hepatic stellate cells to limit liver fibrosis progression. Cell Mol Gastroenterol Hepatol. 2022;14:75–99. https://doi.org/10.1016/j.jcmgh.2022.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS ONE. 2013;8:e62332. https://doi.org/10.1371/journal.pone.0062332.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eckhardt A, Jágr M, Pataridis S, Mikšík I. Proteomic analysis of human tooth pulp: proteomics of human tooth. J Endod. 2014;40:1961–6. https://doi.org/10.1016/j.joen.2014.07.001.

    Article  PubMed  Google Scholar 

  28. Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N. Proteome response of dental pulp cells to exogenous FGF8. J Proteomics. 2018;183:14–24. https://doi.org/10.1016/j.jprot.2018.05.004.

    Article  PubMed  Google Scholar 

  29. Wang H, Ma D, Zhang X, Xu S, Ning T, Wu B. Comparative proteomic profiling of human dental pulp stem cells and periodontal ligament stem cells under in vitro osteogenic induction. Arch Oral Biol. 2018;89:9–19. https://doi.org/10.1016/j.archoralbio.2018.01.015.

    Article  PubMed  Google Scholar 

  30. Xiao X, Xin C, Zhang Y, Yan J, Chen Z, Xu H, Liang M, Wu B, Fang F, Qiu W. Characterization of odontogenic differentiation from human dental pulp stem cells using TMT-based proteomic analysis. BioMed Res Int. 2020;2020:3871496. https://doi.org/10.1155/2020/3871496.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jágr M, Eckhardt A, Pataridis S, Broukal Z, Dušková J, Mikšík I. Proteomics of human teeth and saliva. Physiol Res. 2014;63:S141–54. https://doi.org/10.33549/physiolres.932702.

    Article  PubMed  Google Scholar 

  32. Salmon CR, Giorgetti APO, Paes Leme AF, Domingues RR, Kolli TN, Foster BL, Nociti FH Jr. Microproteome of dentoalveolar tissues. Bone. 2017;101:219–29.

    Article  PubMed  Google Scholar 

  33. Sharma V, Rastogi S, Kumar Bhati K, Srinivasan A, Roychoudhury A, Nikolajeff F, Kumar S. Mapping the inorganic and proteomic differences among different types of human teeth: a preliminary compositional insight. Biomolecules. 2020;10:1540. https://doi.org/10.3390/biom10111540.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lei T, Zhang X, Chen P, Li Q, Du H. Proteomic profile of human dental follicle stem cells and apical papilla stem cells. J Proteom. 2021;231:103928. https://doi.org/10.1016/j.jprot.2020.103928.

    Article  Google Scholar 

  35. Li Y, Gong Y, Wu X, Wang F, Xie Y, Zhu Z, Su Y, Wang J, Zhang C, He J, Deng H, Wang S. Quantitative proteomic analysis of deciduous molars during cap to bell transition in miniature pig. J Proteom. 2018;172:57–67. https://doi.org/10.1016/j.jprot.2017.10.013.

    Article  Google Scholar 

  36. Xu H, Xu Y, Liang X, Wang Y, Jin F, Liu D, Ma Y, Yuan H, Song X, Zeng W. Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits. Mamm Genome. 2013;24:142–50. https://doi.org/10.1007/s00335-013-9446-2.

    Article  PubMed  Google Scholar 

  37. Taguchi J, Fujii A, Fujino Y, Tsujioka Y, Takahashi M, Tsuboi Y, Wada I, Yamada T. Different expression of calreticulin and immunoglobulin binding protein in Alzheimer’s disease brain. Acta Neuropathol. 2000;100:153–60.

    Article  PubMed  Google Scholar 

  38. Lei T, Wang J, Liu Y, Chen P, Zhang Z, Zhang X, Wang X, Li Q, Du H. Calreticulin as a specialmarker to distinguish dental pulp stemcells from gingival mesenchymal stem cells. Int J Biol Macromol. 2021;178:229–39. https://doi.org/10.1016/j.ijbiomac.2021.02.126.

    Article  PubMed  Google Scholar 

  39. Ashique AM, Kharazia V, Yaka R, Phamluong K, Peterson AS, Ron D. Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res. 2006;1069:31–8. https://doi.org/10.1016/j.brainres.2005.11.018.

    Article  PubMed  Google Scholar 

  40. Somogyi E, Petersson U, Hultenby K, Wendel M. Calreticulin—an endoplasmic reticulum protein with calcium-binding activity is also found in the extracellular matrix. Matrix Biol. 2003;22:179–91. https://doi.org/10.1016/s0945-053x(02)00117-8.

    Article  PubMed  Google Scholar 

  41. García J. The calcium channel α2/δ1 subunit interacts with ATP5b in the plasma membrane of developing muscle cells. Am J Physiol Cell Physiol. 2011;301:C44-52. https://doi.org/10.1152/ajpcell.00405.2010.

    Article  PubMed  Google Scholar 

  42. Park JH, Jeong E, Lin J, Ko R, Kim JH, Yi S, Choi Y, Kang IC, Lee D, Lee SY. RACK1 interaction with c-Src is essential for osteoclast function. Exp Mol Med. 2019;51:1–9. https://doi.org/10.1038/s12276-019-0285-4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Serin N, Dihazi GH, Tayyeb A, Lenz C, Müller GA, Zeisberg M, Dihazi H. Calreticulin deficiency disturbs ribosome biogenesis and results in retardation in embryonic kidney development. Int J Mol Sci. 2021;22:5858. https://doi.org/10.3390/ijms22115858.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24:665–83. https://doi.org/10.1096/fj.09-145482.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lwin ZM, Guo C, Salim A, Yip GW, Chew FT, Nan J, Thike AA, Tan PH, Bay BH. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod Pathol. 2010;23:1559–66. https://doi.org/10.1038/modpathol.2010.173.

    Article  PubMed  Google Scholar 

  46. Yang HY, Kwon J, Kook MS, Kang SS, Kim SE, Sohn S, Jung S, Kwon SO, Kim HS, Lee JH, Lee TH. Proteomic analysis of gingival tissue and alveolar bone during alveolar bone healing. Mol Cell Proteom. 2013;12:2674–88. https://doi.org/10.1074/mcp.M112.026740.

    Article  Google Scholar 

  47. Ohshima H, Maeda T, Takano Y. Cytochrome oxidase activity in the enamel organ during amelogenesis in rat incisors. Anat Rec. 1998;252:519–31. https://doi.org/10.1002/(SICI)1097-0185(199812)252:4%3c519::AID-AR3%3e3.0.CO;2-I.

    Article  PubMed  Google Scholar 

  48. Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 2019;10:394. https://doi.org/10.1038/s41419-019-1633-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tiffee JC, Xing L, Nilsson S, Boyce BF. Dental abnormalities associated with failure of tooth eruption in src knockout and op/op mice. Calcif Tissue Int. 1999;65:53–8.

    Article  PubMed  Google Scholar 

  50. Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-multifunctional chaperone in immunogenic cell death: potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 2021;10:130. https://doi.org/10.3390/cells10010130.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors cordially thank Ms. M. Kawachi for her technical assistance and Enago (www.enago.jp) for the English language review. This study was supported by a Grants-in-Aid for Scientific Research (C) (no. 20K10237 to JS-K) and Scientific Research (B) (no. 17H04366 to HO) from the Japan Society for the Promotion of Science and a Research Promotion Grant from The Nippon Dental University (NDU Grant N-17011, 19007).

Author information

Authors and Affiliations

Authors

Contributions

J-SK contributed to the study design, analysis of the experimental data, and preparation of the manuscript. MT contributed to the construction of the heat map and drafting the manuscript. YS contributed to selection of proteins. H-IY contributed to the immunohistochemical analysis. KY and YH performed the mass spectrometry analysis. TY provided scientific advice on proteomics. HO provided scientific advice on designing the study, supervision, and validation, and contributed to preparing the manuscript. The first draft of the manuscript was written by J-SK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junko Shimomura-Kuroki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10266_2023_790_MOESM1_ESM.tif

Supplementary file1 The boundary of epithelial and mesenchymal tissues resected for protein identification in E14- (a) and E16-old tooth germs (b) with laser microdissection. The boundary of the resected epithelial tissues (*) is indicated by solid lines, whereas the resected mesenchymal tissues (**) are surrounded by dotted lines. Scale bar: 100 µm (TIF 3081 KB)

10266_2023_790_MOESM2_ESM.tif

Supplementary file2 ATP5B- (a), RACK1- (b), and CALR-immuno-stained sections (c) of kidney, cerebrum, and liver, respectively, and negative controls from E14-old molars (d), E16-old molars (e), and P3W-old incisors (f). (a) ATP5B is expressed in the nuclei and cytoplasm of renal tubule cells in addition to some cells in the renal corpuscle (*). (b) An intense RACK1 immunoreaction is evident in the pyramidal cells of the cerebral cortex. (c) CALR immunoreaction in liver cells as well as an intense reaction in the central vein. (d–f) No specific reaction is observed in the tissues. ApB. Apical bud; DP, dental papilla; EO, enamel organ. Scale bar: 250 µm (f), 100 µm (d, e), 50 µm (a–c) (TIF 3841 KB)

10266_2023_790_MOESM3_ESM.tif

Supplementary file3 Distribution of 437 proteins selected by MS in the E14 epithelium, E14 mesenchyme, E16 epithelium, and E16 mesenchyme. 437 proteins (E14 epithelium 209; E14 mesenchyme 93; E16 epithelium 84; E16 mesenchyme 51) were selected. E14-epi. E14 epithelium; E16-epi. E16 epithelium; E14-me. E14 mesenchyme; E16-me. E16 mesenchyme (TIF 135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimomura-Kuroki, J., Tsuneki, M., Ida-Yonemochi, H. et al. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 111, 839–853 (2023). https://doi.org/10.1007/s10266-023-00790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00790-4

Keywords

Navigation