Skip to main content

Advertisement

Log in

An in vitro senescence model of gingival epithelial cell induced by hydrogen peroxide treatment

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Gingival tissue shows progressive changes with aging and an in vitro model of gingival tissue could be useful in understanding age-associated oral diseases. The present study aims to establish a hydrogen peroxide (H2O2) treatment model to induce aging in human gingival epithelial cells. In addition, fisetin, a flavonoid component studied for the anti-aging property is used to examine if it could reverse the induced senescence. Primary human gingival epithelial progenitor (HGEPp) cells were cultured and treated with different concentrations of H2O2. A cell vitality and morphology, senescence-associated beta-galactosidase (SA-β-gal) staining, mRNA and protein expression analysis of known senescence markers p16, p21, and p53, and cell cycle assay were performed. The cells showed dose-dependent changes in vitality and morphology, SA-β-gal staining, relative mRNA and protein expression, and cell cycle assay after H2O2 treatment. Based on these results, 400 μM H2O2 was considered as an optimal concentration to induce senescence. Treatment of senescence-induced cells with fisetin downregulated all the senescence markers used in this study. In conclusion, a senescence model of gingival epithelial cells induced by hydrogen peroxide treatment was established which could be employed to study age-related periodontal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ebersole JL, Graves CL, Gonzalez OA, Dawson D, Morford LA, Huja PE, et al. Aging, inflammation, immunity and periodontal disease. Periodontol. 2016;2000(72):54–75. https://doi.org/10.1111/prd.12135.

    Article  Google Scholar 

  2. Kritsilis M, Rizou S, Koutsoudaki P, Evangelou K, Gorgoulis V, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19:297. https://doi.org/10.3390/ijms19102937.

    Article  Google Scholar 

  3. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016; Article ID 3565127. https://doi.org/10.1155/2016/3565127

  4. Yosef R, Pilpel N, Papismadov N, Gal H, Ovadya Y, Vadai E, et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 2017;36:2280–95. https://doi.org/10.15252/embj.201695553.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35:927–45. https://doi.org/10.1016/s0531-5565(00)00180-7.

    Article  PubMed  Google Scholar 

  6. Suzuki M, Boothman DA. Stress-induced premature senescence (SIPS). J Radiat Res. 2008;49:105–12. https://doi.org/10.1269/jrr.07081.

    Article  PubMed  Google Scholar 

  7. Ott C, Jung T, Grune T, Höhn A. SIPS as a model to study age-related changes in proteolysis and aggregate formation. Mech Ageing Dev. 2018;170:72–81. https://doi.org/10.1016/j.mad.2017.07.007.

    Article  PubMed  Google Scholar 

  8. Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci. 1994;91:4130–4. https://doi.org/10.1073/pnas.91.10.4130.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ohguro N, Fukuda M, Sasabe T, Tano Y. Concentration dependent effects of hydrogen peroxide on lens epithelial cells. Br J Ophthalmol. 1999;83:1064–8. https://doi.org/10.1136/bjo.83.9.1064.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoshizaki K, Katakura Y, Fujiki T, Teruya K, Shirahata S. Hydrogen peroxide triggers cellular senescence programs: possible application to tumor suppression. In: Yagasaki K, Miura Y, Hatori M, Nomura Y, editors. Animal cell technology: basic and applied aspects, vol. 13. Springer; 2003.

    Google Scholar 

  11. Duan J, Duan J, Zhang Z, Tong T. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol. 2005;37:1407–20. https://doi.org/10.1016/j.biocel.2005.01.010.

    Article  PubMed  Google Scholar 

  12. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maher P. How fisetin reduces the impact of age and disease on CNS function. Front Biosci. 2015;7:58–82. https://doi.org/10.2741/425.

    Article  Google Scholar 

  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  PubMed  Google Scholar 

  15. Burdon RH, Alliangana D, Gill V. Hydrogen peroxide and the proliferation of Bhk-21 cells. Free Radic Res. 1995;23:471–86. https://doi.org/10.3109/10715769509065268.

    Article  PubMed  Google Scholar 

  16. Wiese AG, Pacifici RE, Davies KJA. Transient adaptation to oxidative stress in mammalian cells. Arch Biochem Biophys. 1995;318:231–40. https://doi.org/10.1006/abbi.1995.1225.

    Article  PubMed  Google Scholar 

  17. Zdanov S. Establishment of H2O2-induced premature senescence in human fibroblasts concomitant with increased cellular production of H2O2. Ann N Y Acad Sci. 2006;1067:210–6. https://doi.org/10.1196/annals.1354.025.

    Article  PubMed  Google Scholar 

  18. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. 1995;92:9363–7. https://doi.org/10.1073/pnas.92.20.9363.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tominaga T, Shimada R, Okada Y, Kawamata T, Kibayashi K. Senescence-associated-β-galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS ONE. 2019;14: e0213673. https://doi.org/10.1371/journal.pone.0213673.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen QM, Tu VC, Catania J, Burton M, Toussaint O, Dilley T. Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J Cell Sci. 2000;113:4087–97.

    Article  PubMed  Google Scholar 

  21. Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11:3599–610. https://doi.org/10.4161/cc.21884.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43. https://doi.org/10.1038/onc.2012.640.

    Article  PubMed  Google Scholar 

  23. Kuliman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–79. https://doi.org/10.1101/gad.1971610.

    Article  Google Scholar 

  24. Mao Z, Ke Z, Gorbunova V, Seluanov A. Replicatively senescent cells are arrested in G1 and G2 phases. Aging. 2012;4:431–5. https://doi.org/10.18632/aging.100467.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shapiro GI, Edwards CD, Ewen ME, Rollins BJ. p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol. 1998;18:378–87. https://doi.org/10.1128/mcb.18.1.378.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gire V, Dulić V. Senescence from G2 arrest, revisited. Cell Cycle. 2015;14:297–304. https://doi.org/10.1080/15384101.2014.1000134.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, et al. Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell. 2014;55:73–84. https://doi.org/10.1016/j.molcel.2014.05.003.

    Article  PubMed  Google Scholar 

  28. Dash BC, El-Deiry WS. Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Mol Cell Biol. 2005;25:3364–87.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herbig U, Sedivy JM. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech Ageing Dev. 2006;127:16–24. https://doi.org/10.1016/j.mad.2005.09.002.

    Article  PubMed  Google Scholar 

  30. Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34–44. https://doi.org/10.1016/j.tifs.2017.10.003.

    Article  Google Scholar 

  31. Seo S-H, Jeong G-S. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression. Int Immunopharmacol. 2015;29:246–53. https://doi.org/10.1016/j.intimp.2015.11.014.

    Article  PubMed  Google Scholar 

  32. Sun X, Ma X, Li Q, Yang Y, Xu X, Sun J, et al. Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: Invitro and invivo studies. Int J Mol Med. 2018;42:811–20. https://doi.org/10.3892/ijmm.2018.3654.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun Q, Zhang W, Zhong W, Sun X, Zhou Z. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice. Alcohol Clin Exp Res. 2016;40:2076–84. https://doi.org/10.1111/acer.13172.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Resende FA, Vilegas W, dos Santos LC, Varanda EA. Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules. 2012;17:5255–68. https://doi.org/10.3390/molecules17055255.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M, et al. Fisetin: an anticancer perspective. Food Sci Nutr. 2020;9:3–16. https://doi.org/10.1002/fsn3.1872.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Grant was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

YF conceptualized the idea. YF, AT, KM and MF designed the study. SG, AT, KY and YK conducted the experiments. SG, DP, YA and YF analyzed and interpreted the data. SG wrote the initial draft of the manuscript. YA and YF contributed in the critical revision of the manuscript. All authors agreed to the final version of the manuscript.

Corresponding author

Correspondence to Yasushi Furuichi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S., Takada, A., Paudel, D. et al. An in vitro senescence model of gingival epithelial cell induced by hydrogen peroxide treatment. Odontology 110, 44–53 (2022). https://doi.org/10.1007/s10266-021-00630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-021-00630-3

Keywords

Navigation