Skip to main content

Advertisement

Log in

Combined in silico analysis identified a putative tooth root formation-related gene, Chd3, which regulates DNA synthesis in HERS01a cells

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

There exists a close connection between changes occurring in the teeth and those occurring in the jaw during the evolutionary process. In mammals, the roots of teeth are supported, along with periodontal ligaments and alveolar bones by a unique structure termed the gomphosis. In the present study, we performed combined in silico analysis using the information obtained from various DNA microarrays and identified 19 putative tooth root formation-related genes. Furthermore, quantitative PCR was performed on the candidate genes, Chd3 was confirmed as having sufficient expression levels in the early stage of tooth root formation and increased gene expression toward the middle stage. A high degree of Chd3 gene expression was observed in secretory ameloblasts and Hertwig’s epithelial root sheath (HERS), but low expression was observed in developing odontoblasts and stellate reticulum. The CHD3 foci were observed in the nucleus of the HERS01a cells. In addition, knockdown experiments using SiChd3 suggested the involvement of Chd3 in the suppression of DNA synthesis. These results suggested that Chd3 plays a role in DNA synthesis in HERS cells for promoting tooth root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

HERS:

Hertwig's epithelial root sheath

NuRD:

Nucleosome remodeling and deacetylase

Pgk1:

Phosphoglyceate kinase 1

References

  1. LeBlanc AR, Reisz RR. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS ONE ONE. 2013;8:e74697. https://doi.org/10.1371/journal.pone.0074697.

    Article  Google Scholar 

  2. Tucker AS, Fraser GJ. Evolution and developmental diversity of tooth regeneration. Semin Cell Dev Biol. 2014;25:71–80. https://doi.org/10.1016/j.semcdb.2013.12.013.

    Article  PubMed  Google Scholar 

  3. Otsu K, Kumakami-Sakano M, Fujiwara N, Kikuchi K, Keller L, Lesot H, Harada H. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol. 2014;5:36. https://doi.org/10.3389/fphys.2014.00036.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gao H, Li B, Zhao L, Jin Y. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine. 2015;10:4009. https://doi.org/10.2147/IJN.S83357.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13:152–9. https://doi.org/10.1007/s11684-018-0628-x.

    Article  PubMed  Google Scholar 

  6. Bertin TJ, Thivichon-Prince B, LeBlanc AR, Caldwell MW, Viriot L. Current perspectives on tooth implantation, attachment, and replacement in Amniota. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.01630.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Pham P. Direct reprogramming of somatic cells: an update. Biomed Res Ther. 2015;2:231–40. https://doi.org/10.7603/s40730-015-0008-y.

    Article  Google Scholar 

  8. Yamamoto K, Kishida T, Sato Y, Nishioka K, Ejima A, Fujiwara H, Kubo T, Yamamoto T, Kanamura N, Mazda O. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci USA. 2015;112:6152–7. https://doi.org/10.1073/pnas.1420713112.

    Article  PubMed  Google Scholar 

  9. Fang L, El Wazan L, Tan C, Nguyen T, Hung SSC, Hewitt AW, Wong RCB. Potentials of cellular reprogramming as a novel strategy for neuroregeneration. Front Cellular Neurosci. 2018;12:460. https://doi.org/10.1111/j.1600-0765.2011.01419.x.

    Article  Google Scholar 

  10. Ripamonti U. Developmental pathways of periodontal tissue regeneration: developmental diversities of tooth morphogenesis do also map capacity of periodontal tissue regeneration? J Perio Res. 2019;54:10–26. https://doi.org/10.1111/jre.12596.

    Article  Google Scholar 

  11. Werner JH, Rosenberg JH, Um JY, Moulton MJ, Agrawal DK. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res. 2019;203:73–877. https://doi.org/10.1016/j.trsl.2018.07.012.

    Article  PubMed  Google Scholar 

  12. Ota MS, Vivatbutsin P, Nakahara T, Eto K. Tooth root development and the cell-based regenerative therapy. J Oral Tissue Eng. 2007;4:137–42. https://doi.org/10.11223/jarde.4.137.

    Article  Google Scholar 

  13. Yokoyama Y, Damrongrungruang T, Suzuki M, Takano Y, Azunma M, Yamawaki M, Mizusawa H, Kuroda S, Ohya K, Kasugai S, Kondo H. Application of laser capture microdissection to periodontal tissue. J Oral Tissue Eng. 2007;4:155–60. https://doi.org/10.11223/jarde.4.155.

    Article  Google Scholar 

  14. Yokoyama Y. Comparison of gene expression profile of cementoblasts with periodontal ligament cells in mouse mandible with laser capture microdissection. Kokubyo Gakkai Zasshi. 2008;75:13–28. https://doi.org/10.5357/koubyou.75.13.

    Article  PubMed  Google Scholar 

  15. Li J, Parada C, Chai Y. Cellular and molecular mechanisms of tooth root development. Development. 2017;144:374–84. https://doi.org/10.1242/dev.137216.12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Feng JQ. Signaling pathways critical for tooth root formation. J Dent Res. 2017;96:1221–8. https://doi.org/10.1177/0022034517717478.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nakatomi M, Morita I, Eto K, Ota MS. Sonic hedgehog signaling is important in tooth root development. J Dent Res. 2006;85:427–31. https://doi.org/10.1177/154405910608500506.

    Article  PubMed  Google Scholar 

  18. Date Y, Yokoyama Y, Kondo H, Kasugai S. Restricted expression of chromatin remodeling associated factor Chd3 during tooth root development. J Periodont Res. 2012;47:180–7.

    Article  Google Scholar 

  19. Akimoto T, Fujiwara N, Kagiya T, Otsu K, Ishizeki K, Harada H. Establishment of Hertwig’s epithelial root sheath cell line from cells involved in epithelial–mesenchymal transition. Biochem Biophys Res Commun. 2011;404:308–12. https://doi.org/10.1016/j.bbrc.2010.11.112.

    Article  PubMed  Google Scholar 

  20. Itaya S, Oka K, Ogata K, Tamura S, Kira-Tatsuoka M, Fujiwara N, Otsu K, Tsuruga E, Ozaki M, Harada H. Hertwig’s epithelial root sheath cells contribute to formation of periodontal ligament through epithelial–mesenchymal transition by TGF-β. Biomed Res. 2017;38:61–9. https://doi.org/10.2220/biomedres.38.61.

    Article  PubMed  Google Scholar 

  21. Yamashita D, Moriuchi T, Osumi T, Hirose F. Transcription factor hDREF is a novel SUMO E3 ligase of Mi2α. J Biol Chem. 2016;291:11619–34. https://doi.org/10.1074/jbc.M115.713370.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y. Biology of the Mi-2/NuRD complex in SLAC (stemness, longevity/ageing, and cancer). Gene Regul Syst Biol. 2011;5:1–26. https://doi.org/10.4137/GRSB.S6510.

    Article  Google Scholar 

  23. Lv P, Jia HT, Gao XJ. Immunohistochemical localization of transcription factor Sp3 during dental enamel development in rat tooth germ. Eur J Oral Sci. 2006;114:93–5. https://doi.org/10.1111/j.1600-0722.2006.00270.x.

    Article  PubMed  Google Scholar 

  24. Valin A, Gill G. Regulation of the dual-function transcription factor Sp3 by SUMO. Biochem Soc Trans. 2007;35:1393–6. https://doi.org/10.1042/BST0351393.

    Article  PubMed  Google Scholar 

  25. Stielow B, Sapetschnig A, Wink C, Krüger I, Suske G. SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep. 2008;9:899–906. https://doi.org/10.1038/embor.2008.127.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nitarska J, Smith JG, Sherlock WT, Hillege MM, Nott A, Barshop WD, Vashisht AA, Wohlschlegel JA, Mitter R, Riccio A. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 2016;17:1683–98. https://doi.org/10.1016/j.celrep.2016.10.022.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bouwman P, Göllner H, Elsässer HP, Eckhoff G, Karis A, Grosveld F, Philipsen S, Suske G. Transcription factor Sp3 is essential for post-natal survival and late tooth development. EMBO J. 2000;19:655–61. https://doi.org/10.1093/emboj/19.4.655.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ogata Y, Takai H, Nakayama Y, Fukae M. Function of amelogenins in periodontal regeneration induced by enamel matrix derivative. J Oral Biosci. 2011;53:267–74. https://doi.org/10.2330/joralbiosci.53.267.

    Article  Google Scholar 

  29. Zeichner-David M, Chen LS, Hsu Z, Reyna J, Caton J, Bringas P. Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells. Eur J Oral Sci. 2006;114:244–53. https://doi.org/10.1111/j.1600-0722.2006.00322.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Exploratory Research (Grant 25670831) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato S. Ota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Date, Y., Kondo, H., Yamashita, A. et al. Combined in silico analysis identified a putative tooth root formation-related gene, Chd3, which regulates DNA synthesis in HERS01a cells. Odontology 108, 386–395 (2020). https://doi.org/10.1007/s10266-020-00489-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-020-00489-w

Keywords

Navigation