Skip to main content

Advertisement

Log in

The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To evaluate the marginal adaptation of endodontically treated molars restored with CAD/CAM composite resin endocrowns either with or without reinforcement by fibre reinforced composites (FRCs), used in different configurations. 32 human endodontically treated molars were cut 2 mm over the CEJ. Two interproximal boxes were created with the margins located 1 mm below the CEJ (distal box) and 1 mm over the CEJ (mesial box). All specimens were divided in four groups (n = 8). The pulp chamber was filled with: group 1 (control), hybrid resin composite (G-aenial Posterior, GC); group 2, as group 1 but covered by 3 meshes of E-glass fibres (EverStick NET, Stick Tech); group 3, FRC resin (EverX Posterior, GC); group 4, as group 3 but covered by 3 meshes of E-glass fibres. The crowns of all teeth were restored with CAD/CAM composite resin endocrowns (LAVA Ultimate, 3M). All specimens were thermo-mechanically loaded in a computer-controlled chewing machine (600,000 cycles, 1.6 Hz, 49 N and simultaneously 1500 thermo-cycles, 60 s, 5–55 °C). Marginal analysis before and after the loading was carried out on epoxy replicas by SEM at 200× magnification. For all the groups, the percentage values of perfect marginal adaptation after loading were always significantly lower than before loading (p < 0.05). The marginal adaptation before and after loading was not significantly different between the experimental groups (p > 0.05). Within the limitations of this in vitro study, the use of FRCs to reinforce the pulp chamber of devitalized molars restored with CAD/CAM composite resin restorations did not significantly influenced their marginal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature—part 1. Composition and micro- and macrostructure alterations. Quintessence Int. 2007;38:733–43.

    PubMed  Google Scholar 

  2. Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for anterior teeth. J Prosthet Dent. 2002;87:503–9.

    Article  PubMed  Google Scholar 

  3. Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for posterior teeth. Int J Periodontics Restor Dent. 2002;22:241–9.

    Google Scholar 

  4. Krejci I, Duc O, Dietschi D, de Campos E. Marginal adaptation, retention and fracture resistance of adhesive composite restorations on devital teeth with and without posts. Oper Dent. 2003;28:127–35.

    PubMed  Google Scholar 

  5. Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int. 2009;40:125–33.

    PubMed  Google Scholar 

  6. Lin C, Chang Y, Pa C. Estimation of the risk of failure for an endodontically treated maxillary premolar with MODP preparation and CAD/CAM ceramic restorations. J Endod. 2009;35:1391–5.

    Article  PubMed  Google Scholar 

  7. Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years-preliminary results. J Adhes Dent. 1999;1:255–65.

    PubMed  Google Scholar 

  8. Bindl A, Richter B, Mormann WH. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int J Prosthodont. 2005;18:219–24.

    PubMed  Google Scholar 

  9. Pashley DH, Tay FR, Breschi L, Tjaderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A. State of the art etch-and-rinse adhesive. Dent Mater. 2011;27:1–16.

    Article  PubMed  Google Scholar 

  10. Bernhart J, Bräuning A, Altenburger MJ, Wrbas KT. Cerec3D endocrowns—two-year clinical examination of CAD/CAM crowns for restoring endodontically treated molars. Int J Comput Dent. 2010;13:141–54.

    PubMed  Google Scholar 

  11. Dere M, Ozcan M, Göhring TN. Marginal quality and fracture strength of root-canal treated mandibular molars with overlay restorations after thermocycling and mechanical loading. J Adhes Dent. 2010;12:287–94.

    PubMed  Google Scholar 

  12. Fennis WMM, Tezvergil A, Kuijs RH, Lassila LVJ, Kreulen CM, Creugers NHJ, Vallittu PK. In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations. Dent Mater. 2005;21:565–72.

    Article  PubMed  Google Scholar 

  13. Garoushi SK, Lassila LV, Vallittu PK. Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration. Acta Odontol Scand. 2006;64:281–5.

    Article  PubMed  Google Scholar 

  14. Rocca GT, Rizcalla N, Krejci I. Fiber-reinforced resin coating for endocrown preparations: a technical report. Oper Dent. 2012;38:242–8.

    Article  PubMed  Google Scholar 

  15. Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Load bearing capacity of fibre-reinforces and particulate filler composite resin combination. J Dent. 2006;34:179–84.

    Article  PubMed  Google Scholar 

  16. Forberger N, Göhring TN. Influence of the type of post and core on in vitro marginal continuity, fracture resistance, and fracture mode of lithia disilicate-based all-ceramic crowns. J Prosthet Dent. 2008;100:264–73.

    Article  PubMed  Google Scholar 

  17. Stricker EJ, Göhring TN. Influence of different posts and cores on marginal adaptation, fracture resistance, and fracture mode of composite resin crowns on human mandibular premolars. An in vitro study. J Dent. 2006;34:326–35.

    Article  PubMed  Google Scholar 

  18. Zarone F, Sorrentino R, Apicella D, Valentino B, Ferrari M, Aversa R, Apicella A. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3D static linear finite elements analysis. Dent Mater. 2006;22:1035–44.

    Article  PubMed  Google Scholar 

  19. Hitz T, Ozcan M, Göhring TN. Marginal adaptation and fracture resistance of root-canal treated mandibular molars with intracoronal restorations: effect of thermocycling and mechanical loading. J Adhes Dent. 2010;12:279–86.

    PubMed  Google Scholar 

  20. Ramirez-Sebastià A, Bortolotto T, Roig M, Krejci I. Composite vs ceramic computer-aided design/computer-assisted manufacturing crowns in endodontically treated teeth: analysis of marginal adaptation. Oper Dent. 2013;38:663–73.

    Article  PubMed  Google Scholar 

  21. Rocca GT, Krejci I. Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization. Quintessence Int. 2007;38:371–9.

    PubMed  Google Scholar 

  22. Rocca GT, Krejci I. Bonded indirect restorations for posterior teeth: the luting appointment. Quintessence Int. 2007;38:543–53.

    PubMed  Google Scholar 

  23. Krämer N, Reinelt C, Richter G, Frankenberger R. Four-year clinical performance and marginal analysis of pressed glass ceramic inlays luted with ormocer restorative vs conventional luting composite. J Dent. 2009;37:813–9.

    Article  PubMed  Google Scholar 

  24. Magne P, Knezevic A. Thickness of CAD–CAM composite resin overlays influences fatigue resistance of endodontically treated premolars. Dent Mater. 2009;25:1264–8.

    Article  PubMed  Google Scholar 

  25. Schulte AG, Vöckler A, Reinhardt R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J Dent. 2005;33:433–42.

    Article  PubMed  Google Scholar 

  26. Gregor L, Bouillaguet S, Onisor I, Ardu S, Krejci I, Rocca GT. Microhardness of light- and dual-polymerizable luting resins polymerized through 7.5-mm-thick endocrowns. J Prosthet Dent. 2014;112:942–8.

    Article  PubMed  Google Scholar 

  27. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials. 2005;26:6449–59.

    Article  PubMed  Google Scholar 

  28. Garoushi SK, Shinya A, Shinya A, Vallittu PK. Fiber-reinforced onlay composite resin restoration: a case report. J Contemp Dent Pract. 2009;10:104–10.

    PubMed  Google Scholar 

  29. Gohring TN, Roos M. Inlay-fixed partial dentures adhesively retained and reinforced by glass fibers: clinical and scanning electron microscopy analysis after five years. Eur J Oral Sci. 2005;113:60–9.

    Article  PubMed  Google Scholar 

  30. Xu HH, Quinn JB, Smith DT, Antonucci JM, Schumacher GE, Eichmiller FC. Dental resin composites containing silica-fused whiskers—effects of whisker-to-silica ratio on fracture toughness and indentation properties. Biomaterials. 2002;23:735–42.

    Article  PubMed  Google Scholar 

  31. Petersen RC. Discontinuous fiber-reinforced composites above critical length. J Dent Res. 2005;84:365–70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29:835–41.

    Article  PubMed  Google Scholar 

  33. Krejci I, Lutz F, Krejci D. The influence of different base materials on marginal adaptation and wear of conventional Class II composite resin restorations. Quintessence Int. 1988;19:191–8.

    PubMed  Google Scholar 

  34. Dietschi D, Olsburgh S, Krejci I, Davidson C. In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. Eur J Oral Sci. 2003;111:73–80.

    Article  PubMed  Google Scholar 

  35. Rocca GT, Gregor L, Sandoval MJ, Krejci I, Dietschi D. In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases and interface treatments. “Post-fatigue adaptation of indirect composite restorations”. Clin Oral Investig. 2012;16:1385–93.

    Article  PubMed  Google Scholar 

  36. Lin C, Chang Y, Pai C. Evaluation of failure risks in ceramic restorations for endodontically treated premolar with MOD preparation. Dent Mater. 2011;27:431–8.

    Article  PubMed  Google Scholar 

  37. Lutz E, Krejci I, Oldenburg TR. Elimination of polymerization stresses at the margins of posterior composite resin restorations: a new restorative technique. Quintessence Int. 1986;17:777–84.

    PubMed  Google Scholar 

  38. Friedl KH, Schmalz G, Hiller KA, Mortazavi F. Marginal adaptation of composite restorations versus hybrid ionomer/composite sandwich restorations. Oper Dent. 1997;22:21–9.

    PubMed  Google Scholar 

  39. Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent Mater. 2013;29:59–84.

    Article  PubMed  Google Scholar 

  40. Frankenberger R, Krämer N, Lohbauer U, Nikolaenko SA, Reich SM. Marginal integrity: is the clinical performance of bonded restorations predictable in vitro? J Adhes Dent. 2007;9:107–16.

    PubMed  Google Scholar 

  41. Bortolotto T, Onisor I, Krejci I. Proximal direct composite restorations and chairside CAD/CAM inlays: Marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. Clin Oral Investig. 2007;11:35–43.

    Article  PubMed  Google Scholar 

  42. Onisor I, Bouillaguet S, Krejci I. Influence of different surface treatments on marginal adaptation in enamel and dentin. J Adhes Dent. 2007;9:297–303.

    PubMed  Google Scholar 

  43. Heintze SD, Blunck U, Göhring TN, Rousson V. Marginal adaptation in vitro and clinical outcome of class V restorations. Dent Mater. 2009;25:605–20.

    Article  PubMed  Google Scholar 

  44. Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations a 3D finite element analysis. Dent Mater. 2002;18:295–303.

    Article  PubMed  Google Scholar 

  45. Giachetti L, Scaminaci Russo D, Bambi C, Grandini R. A review of polymerization shrinkage stress: current techniques for posterior direct resin restorations. J Contemp Dent Pract. 2006;7:79–88.

    PubMed  Google Scholar 

  46. Versluis A, Tantbirojn D, Pintado MR, DeLong R, Douglas WH. Residual shrinkage stress distributions in molars after composite restoration. Dent Mater. 2004;20:554–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank GC and 3M Espe for their generous supply of the tested materials.

Conflict of interest

G. T. Rocca, C. M. Saratti, A. Poncet, A. J. Feilzer, I. Krejci declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Tommaso Rocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, G.T., Saratti, C.M., Poncet, A. et al. The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading. Odontology 104, 220–232 (2016). https://doi.org/10.1007/s10266-015-0202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-015-0202-9

Keywords

Navigation