Skip to main content

Advertisement

Log in

Acidic pH resistance of grafted chitosan on dental implant

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Over the last decade, access to dental care has increasingly become a service requested by the population, especially in the case of dental implants. However, the major cause of implant failure is an inflammatory disease: peri-implantitis. Currently, the adhesion strength of antibacterial coatings at implant surfaces remains a problem to solve. In order to propose a functionalized implant with a resistant antibacterial coating, a novel method of chitosan immobilization at implant surface has been investigated. Functionalization of the pre-active titanium (Ti) surface was performed using triethoxysilylpropyl succinic anhydride (TESPSA) as a coupling agent which forms a stable double peptide bond with chitosan. The chitosan presence and the chemical resistibility of the coating under acid pH solutions (pH 5 and pH 3) were confirmed by FTIR-ATR and XPS analyses. Furthermore, peel test results showed high adhesive resistance of the TESPSA/chitosan coating at the substrate. Cytocompatibility was evaluated by cell morphology with confocal imaging. Images showed healthy morphology of human gingival fibroblasts (HGF-1). Finally, the reported method for chitosan immobilization on Ti surface via peptide bindings allows for the improvement of its adhesive capacities and resistibility while maintaining its cytocompatibility. Surface functionalization using the TESPSA/chitosan coupling method is noncytotoxic and stable even in drastic environments as found in oral cavity, thus making it a valuable candidate for clinical implantology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52:105–15.

    Article  PubMed  Google Scholar 

  2. Ikinci G, Senel S, Akincibay H, Kas S, Ercis S, Wilson CG, Hincal AA. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm. 2002;235:121–7.

    Article  PubMed  Google Scholar 

  3. Bergera J, Reista M, Mayera JM, Feltb O, Gurnyb R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57:35–52.

    Article  Google Scholar 

  4. Klinge B, Hultin M, Berglundh T. Peri-implantitis. Dent Clin North Am. 2005;49:661–76.

    Article  PubMed  Google Scholar 

  5. Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009;72(Suppl 2):104–10.

    Article  PubMed  Google Scholar 

  6. Mouhyi J, Ehrenfest DMD, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Imp Dent Relat Res. 2012;14(Suppl 2):170–82.

    Article  Google Scholar 

  7. Ferreira SD, Silva GLM, Cortelli JR, Costa JE, Costa FO. Prevalence and risk variables for peri-implant disease in Brazilian subjects. J Clin Periodontol. 2006;7:929–35.

    Article  Google Scholar 

  8. Strietzel FP, Reichart PA, Kale A, Kulkarni M, Wegner B, Kuchler I. Smoking interferes with the prognosis of dental implant treatment: a systematic review and meta-analysis. J Clin Periodontol. 2007;34:523–44.

    Article  PubMed  Google Scholar 

  9. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res Part B. 2009;91(Suppl 1):470–80.

    Article  Google Scholar 

  10. Muñoz-Bonilla A, Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281–339.

    Article  Google Scholar 

  11. Nheo KG, Hu X, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials. 2012;33:2813–22.

    Article  Google Scholar 

  12. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(Suppl 6):1457–65.

    Article  PubMed  Google Scholar 

  13. Hu X, Neoh KG, Shi Z, Kang ET, Poh C, Wang W. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials. 2010;31:8854–63.

    Article  PubMed  Google Scholar 

  14. Popeka A, Novak I, Lehocky M, Junkar I, Mozetic M, Kleinova A, Janigova I, Slouf M, Bilek F, Chodak I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr Polym. 2012;90:1501–8.

    Article  Google Scholar 

  15. McConnell EL, Murdan S, Basit AW. An investigation into the digestion of chitosan (noncrosslinked and crosslinked) by human colonic bacteria. J Pharm Sci. 2008;9:3820–9.

    Article  Google Scholar 

  16. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.

    Article  PubMed  Google Scholar 

  17. Lim TY, Wang W, Shi Z, Poh CK, Neoh KG. Human bone marrow derived mesenchymal stem cells and osteoblast differentiation on titanium with surface-grafted chitosan and immobilized bone morphogenetic protein-2. J Mater Sci Mater Med. 2009;20(Suppl 1):1–10.

    Article  PubMed  Google Scholar 

  18. Marques ME, Mansur AAP, Mansur HS. Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Appl Surf Sci. 2013;275:347–60.

    Article  Google Scholar 

  19. Martin HJ, Schulz KH, Bumgardner JD, Walters KB. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan. Appl Surf Sci. 2008;254:4599–605.

    Article  Google Scholar 

  20. Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28:467–77.

    Article  PubMed  Google Scholar 

  21. Renoud P, Toury B, Benayoun S, Attik G, Grosgogeat B. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances. PLoS One. 2012;7(Suppl 7):e39367.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater. 2012;24:854–69.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mello KGPC, Bernusso LC, Pitombo RNM, Polakiewicz B. Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride. Braz Arch Biol Technol. 2006;49(Suppl 4):665–8.

    Article  Google Scholar 

  24. Katzur V, Eichler M, Deigele E, Stage C, Karageorgiev P, Geis-Gerstorfer J, Schmalz G, Ruhl S, Rupp F, Müller R. Surface-immobilized PAMAM-dendrimers modified with cationic or anionic terminal functions: physicochemical surface properties and conformational changes after application of liquid interface stress. J Col Int Sci. 2012;366:179–90.

    Article  Google Scholar 

  25. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995–2002.

    Article  PubMed  Google Scholar 

  26. Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res A. 2008;86:865–72.

    Article  PubMed  Google Scholar 

  27. Kumar S, Dutta PK, Koh J. A physico–chemical and biological study of novel chitosan–chloroquinoline derivative for biomedical applications. Int J Biol Macromol. 2011;49(Suppl 3):356–61.

    Article  PubMed  Google Scholar 

  28. Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT. Preparation and characterization of RGD-immobilized chitosan. Biomaterials. 2005;26(16):3197–206.

    Article  PubMed  Google Scholar 

  29. Zhang J, Wang Q, Wang A. Synthesis and characterization of chitosan-g-poly(acrylic-acid)/attapulgite superabsorbent composites. Carbohydr Polym. 2007;68(Suppl 2):356–61.

    Google Scholar 

  30. Sun T, Zhou D, Xie J, Mao F. Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol. 2006;225(Suppl 3–4):451–6.

    Google Scholar 

  31. Toury B, Grosgogeat B, Renoud P, Desroches C, Inventors (2013) UCBL CNRS, assignee. Substrate on which chitosan or collagen is grafted via a covalent bond. French patent FR1250689. Jan 2012. PCT process in press Fev 2013.

Download references

Acknowledgments

The authors wish to acknowledge Global D for providing titanium samples and Science et surface for XPS analysis; the authors wish to express their appreciation to the Lyon Science Transfert Department (LST 784 BTO) of the University of Lyon and the Institut Français de la Recherche (IFRO 2011) for their financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris M. Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, D.M., Toury, B., D’Almeida, M. et al. Acidic pH resistance of grafted chitosan on dental implant. Odontology 103, 210–217 (2015). https://doi.org/10.1007/s10266-014-0162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-014-0162-5

Keywords

Navigation