Skip to main content
Log in

Current knowledge about Na2SO4 effects on plants: what is different in comparison to NaCl?

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In some areas of the world, high levels of sodium sulfate (Na2SO4) are found in the soil together with sodium chloride (NaCl). However, most studies on salinity are performed utilizing only NaCl as a salinizing agent. Generally, plant species have different tolerance/susceptibility responses when grown in the presence of these salts. Some studies showed that Na2SO4 seems to be more inhibitory than NaCl for the growth of species such as barley, wheat, sugar cane, beet, tomato, wild potato, and others. However, studies focusing on how Na2SO4 can affect the biochemical and physiological processes of plants are very scarce. This review provides an overview on the effects of Na2SO4 on different crops and plants species with a special emphasis on the tolerance/non-tolerance mechanisms of the halophyte Prosopis strombulifera under elevated NaCl and Na2SO4. A better understanding of the tolerance mechanisms in this particular species will help to identify cultivars of crop species that are more tolerant to Na2SO4. This knowledge could be used to extent cultivation of certain crop plants on Na2SO4 containing soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Mariana Reginato)

Fig. 2

(Source: Mariana Reginato)

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Aghajanzadeh TA, Reich M, Kopriva S, De Kok LJ (2018) Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa. J Agro Crop Sci 204:137–146. https://doi.org/10.1111/jac.12243

    Article  CAS  Google Scholar 

  • Aghajanzadeh TA, Reich M, Hawkesford MJ, Burow M (2019) Sulfur metabolism in Allium cepa is hardly affected by chloride and sulfate salinity. Arch Agron Soil Sci 65:945–956. https://doi.org/10.1080/03650340.2018.1540037

    Article  CAS  Google Scholar 

  • Al-Hamzawi M (2007) Effect of sodium chloride and sodium sulfate on growth, and ions content in faba-bean (Vicia faba). J Kerbala Univ 5:152–216

    Google Scholar 

  • Anesini C, Perez C (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39:119–128

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Argamasilla R, Gomez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Assareh MH, Rasouli B, Amiri B (2010) Effects of NaCl and Na2SO4 on germination and initial growth phase of Halostachys caspica. Desert 15:119–125

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bañuelos GS, Mead R, Hoffman GJ (1993) Accumulation of selenium in wild mustard irrigated with agricultural effluent. Agric Ecosyst Environ 43:119–126

    Article  Google Scholar 

  • Barhoumi Z (2018) Physiological response of the facultative halophyte, Aeluropus littoralis, to different salt types and levels. Plant Biosyst 153:298–305

    Article  Google Scholar 

  • Bilski J, Nelson D, Conlon R (1988) Response of six wild potato species to chloride and sulfate salinity. Am Potato J 65:605–612

    Article  Google Scholar 

  • Boestfleisch C, Papenbrock J (2017) Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L. and Halimione portulacoides (L.) Aellen as reaction to mild salinity. PLoS One 12:1–18

    Article  CAS  Google Scholar 

  • Boestfleisch C, Wagenseil NB, Buhmann AK, Seal CE, Wade EM, Muscolo A (2014) Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants 6:plu046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494. https://doi.org/10.1093/aob/mcu219

    Article  PubMed  Google Scholar 

  • Boursier P, Läuchli A (1990) Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci 30:1226–1233

    Article  CAS  Google Scholar 

  • Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam Mimosoideae). Catalogue of the recognized species of Prosopis. J Arnold Arbor 57:450–525

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas Argentinas: In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería, Tomo 2, Fasc. 1. ACME, Buenos Aires, pp 1–85

  • Cambrollé J, Mateos-Naranjo E, Redondo-Gómez LT, Figueroa ME (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71:57–64

    Article  CAS  Google Scholar 

  • Can-Chulim A, Cruz-Crespo E, Ortega-Escobar HM, Sánchez-Bernal EI, Madueño Molina A, Bojórquez-Serrano JI, Mancilla-Villa OR (2017) Phaseolus vulgaris response to salinity generated by NaCl, Na2SO4 and NaHCO3. Rev Mex Cienc Agríc 8:1287–1300

    Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang C (2013) Bin SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  CAS  PubMed  Google Scholar 

  • Cerović ZG, Kalezić R, Plesničar M (1982) The role of photophosphorylation in SO2 and SO32– inhibition of photosynthesis in isolated chloroplasts. Planta 156:249–254

    Article  PubMed  Google Scholar 

  • Chang C, Sommerfeldt TG, Carefoot JM, Schaalje GB (1983) Relationships of electrical conductivity with total dissolved salts and cation concentration of sulfate-dominant soil extracts. Can J Soil Sci 63:79–86. https://doi.org/10.4141/cjss83-008

    Article  CAS  Google Scholar 

  • Chavan PD, Karadge BA (1980) Influence of sodium chloride and sodium sulfate salinities on photosynthetic carbon assimilation in peanut. Plant Soil 56:201–207

    Article  CAS  Google Scholar 

  • Coley D, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Rea E, Cardarelli M (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci Horticul 135:177–185

    Article  CAS  Google Scholar 

  • Curtin DH, Steppuhn H, Selles F (1993) Plant responses to sulfate and chloride salinity: growth and ionic relations. SSSA 57:1304–1310

    Article  CAS  Google Scholar 

  • Dadshani S, Sharma RC, Baum M, Ogbonnaya FC, León J, Ballvora A (2019) Multidimensional evaluation of response to salt stress in wheat. PLoS One 14(9):e0222659. https://doi.org/10.1371/journal.pone.0222659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta KS, Kumar A, Varma SK, Angrish R (1995) Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. J Plant Nutr 18:2199–2212

    Article  CAS  Google Scholar 

  • Degano C (1999) Respuestas morfológicas y anatómicas de Tessaria absinthioides (Hook. et Arn.) DC. a la salinidad. Rev Bras Bot 22:357–363

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • El-Samad H, Shaddad MAK (1996) Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. J Plant Nutr 19:717–728. https://doi.org/10.1080/01904169609365155

    Article  CAS  Google Scholar 

  • FAO (1988) FAO/Unesco Soil Map of the World. Revised Legend, with corrections and updates. World Soils Resources Report 60, FAO, Rome

  • Felker P, Ewens M, Velarde M, Medina D (2008) Initial evaluation of Prosopis alba Griseb clones selected for growth at seawater salinities. Arid Land Res Manag 22:334–345

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Muscolo A ( 2015) Introduction to the Special Issue: Halophytes in a changing world. AoB Plants 7:plv020. https://doi.org/10.1093/aobpla/plv020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quart Rev Biol 61:313–337

    Article  Google Scholar 

  • Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ 18:1041–1047

    Article  CAS  Google Scholar 

  • Freedman B, Hutchinson TC (1980) Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can J Bot 58:108–132

    Article  CAS  Google Scholar 

  • Gagneul D, Aınouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghars MA, Parre E, Debez A (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol 165:588–599

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Graßes T, Pesaresi P, Schiavon F, Varotto C, Salamini F, Jahns P, Leister D (2002) The role of ΔpH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol Biochem 40:41–49

    Article  Google Scholar 

  • Grigore MN, Toma C (2017) Anatomical adaptations of halophytes. A review of classic literature and recent findings. Springer, New York (ISBN 978-3-319-66479-8)

    Google Scholar 

  • Grigore MN (2008) Introducere ın Halofitologie. Elemente de anatomie integrativa˘. Edit. Pim, Iasi.

  • Gupta VK, Gupta SP (1984) Effect of zinc sources and levels on the growth and Zn nutrition of soybean (Glycine max L.) in the presence of chloride and sulphate salinity. Plant Soil 81:299–304

    Article  CAS  Google Scholar 

  • Hapon MB, Hapon MV, Persia FA, Pochettino A, Lucero GS (2014) Aqueous extract of Prosopis strombulifera (Lam) Benth induces cytotoxic effects against tumor cell lines without systemic alterations in BALB/c mice. J Clin Toxicol 4:222. https://doi.org/10.4172/2161-0495.1000222

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hasson-Porath E, Kahana I, Poijakoff-Mayber A (1972) The effect of chloride and sulfate types of salinity on growth and on osmotic adaptation of pea seedlings. Plant Soil 36:449–459

    Article  CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol 67:283–335. https://doi.org/10.1086/417659

    Article  Google Scholar 

  • Huang J, Redmann R (1995) Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci 75:815–819

    Article  Google Scholar 

  • Inal A (2002) Growth proline accumulation and ionic relations of tomato (Licopersicum esculentum L.) as influence by NaCl and Na2SO4 salinity. Turk J Bot 26:285–290

    Google Scholar 

  • Inal A, Gunes A, Pilbeam DJ, Kadioglu YK, Eraslan F (2009) Concentrations of essential and nonessential elements in shoots and storage roots of carrot grown in NaCl and Na2SO4 salinity. X-Ray Spectromet 38:45–51

    Article  CAS  Google Scholar 

  • Iqbal RM (2003) Leaf area and ion content of wheat grown under NaCl and Na2SO4 salinity. Pakistan J Biol Sci 6:1512–1514

    Article  Google Scholar 

  • Irakoze W, Vanpee B, Rufyikiri G, Dailly H, Nijimbere S, Lutts S (2019) Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. J Plant Nutr 42:1–15. https://doi.org/10.1080/01904167.2019.1584222

    Article  CAS  Google Scholar 

  • Irakoze W, Prodjinoto H, Nijimbere S, Rufyikiri G, Lutts S (2020) NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy 10:864. https://doi.org/10.3390/agronomy10060864

    Article  CAS  Google Scholar 

  • Joshi G, Naik R (1980) Response of sugarcane to different types of salt stress. Plant Soil 56:255–263

    Article  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaymakanova M (2009) Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnol Biotechnol Equip 23(sup1):326–329

    Article  Google Scholar 

  • Khan R, Rehman F, Gulafshan KA (2020) Effect of salinity (Na2SO4) on stomata, and yield parameters of Indian mustard (Brassica juncea L.) var. Goldi. Int J Nanomater Nanotechnol Nanomed 6:021–023. https://doi.org/10.17352/2455-3492.000036

    Article  CAS  Google Scholar 

  • Koralewska A, Posthumus FS, Stuiver CEE, Buchner P, Hawkesford MJ, De Kok LJ (2007) The characteristic high sulfate content in Brassica oleracea is controlled by the expression and activity of sulfate transporters. Plant Biol 9:654–661

    Article  CAS  PubMed  Google Scholar 

  • Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2008) Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Funct Plant Biol 35:318–327

    Article  CAS  PubMed  Google Scholar 

  • Koralewska A, Buchner P, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2009) Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. J Plant Physiol 166:168–179

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146

    Article  CAS  Google Scholar 

  • Kurunc A, Aslan G, Karaca C, Tezcan A, Turgut K, Karhan M, Kaplan B (2020) Effects of salt source and irrigation water salinity on growth, yield and quality parameters of Stevia rebaudiana Bertoni. Sci Horticul 270:109458

    Article  CAS  Google Scholar 

  • Leonova T, Ovchinnykova V, Souer E, de Boer A, Kharchenko P, Babakov A (2009) Isolated Thellungiella shoots do not require roots to survive NaCl and Na2SO4 salt stresses. Plant Signal Behav 4:1059–1062. https://doi.org/10.4161/psb.4.11.9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llanes A, Reinoso H, Luna V (2005) Germination and early growth of Prosopis strombulifera seedlings in different saline solutions. World J Agric Sci 1:120–128

    Google Scholar 

  • Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Arbona V, Gómez-Cadenas A, Luna V (2016) Metabolomic profiling of the halophyte Prosopis strombulifera shows sodium salt-specific response. Plant Physiol Biochem108:145–157

    Article  CAS  PubMed  Google Scholar 

  • Lugan R, Niogret MF, Leport L (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    Article  CAS  PubMed  Google Scholar 

  • Manivannan P, Jaleel C, Kishorekumar A, Sankar B, Somasundaram R, Panneerselvam R (2008) Protection of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids Surf B Biointerfaces 61:315–318

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A (2017) Metabolic changes sustain the plant life in low-sulfur environments. Curr Opinion Plant Biol 39:144–151

    Article  CAS  Google Scholar 

  • Mastrogiannidou E, Chatzissavvidis C, Antonopoulou C, Tsabardoukas V, Giannakoula A, Therios I (2016) Response of pomegranate cv. wonderful plants tο salinity. J Soil Sci Plant Nutr 16:621–636

    CAS  Google Scholar 

  • Mills AJ, Fey MV, Johnson CE (2004) Effects of sodium sulphate, sodium chloride and manganese sulphate on kikuyu (Pennisetum clandestinum) growth and ion uptake. South Afr J Plant Soil 21:209–213

    Article  CAS  Google Scholar 

  • Miyamoto S, Nesbitt M (2011) Effectiveness of soil salinity management practices in basic irrigated pecan orchards. Hort Technol 21:569–576

    Article  CAS  Google Scholar 

  • Mor RP, Manchanda HR (1992) Influence of phosphorus on the tolerance of table pea to chloride and sulphate salinity in a sandy soil. Arid Soil Res Rehab 6:41–52

    Article  CAS  Google Scholar 

  • Moreno-Izaguirre E, Ojeda-Barrios D, Avila-Quezada G, Guerrero-Prieto V, Parra-Quezada R, Ruiz-Anchondo T (2015) Sodium sulfate exposure slows growth of native pecan seedlings. ΦYTON 84:80–85

    Google Scholar 

  • Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1e110

    Article  Google Scholar 

  • Moss M (1978) Sources of sulfur in the environment: the global sulfur cycle. In: Nriagu JO (ed) Sulfur in the environment, part 1: the atmospheric cycle. Wiley, New York, pp 23–50

    Google Scholar 

  • Naik VV, Karadge BA (2017) Effect of NaCl and Na2SO4 salinities and light conditions on seed germination of purslane (Portulaca oleracea Linn.). J Plant Stress Physiol 3:1–4

    Article  Google Scholar 

  • Navarro JM, Garrido C, Carvajal M, Martinez V (2002) Yield and fruit quality of pepper plants under sulphate and chloride salinity. J Hortic Sci Biotech 77:52–57

    Article  Google Scholar 

  • Navarro JM, Garrido C, Martínez V (2003) Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regul 41:237–245

    Article  CAS  Google Scholar 

  • Nawaz K, Hussain K, Siddiqi E, Majeed A (2018) Effect of Na2SO4 salinity on Brinjal (Solanum melongena). LGU J Life Sci 2:176–189

    Google Scholar 

  • Nedjimi B, Daoud Y (2006) Effect of Na2SO4 on the growth, water relations, proline, total soluble sugars and ion content of Atriplex halimus subsp schweinfurthii through in vitro culture. Anales Biologia 28:35–43

    Google Scholar 

  • Niu G, Rodriguez D, Dever J, Zhang J (2013) Growth and physiological responses of five cotton genotypes to sodium chloride and sodium sulfate saline water irrigation. J Cotton Sci 17:233–244

    CAS  Google Scholar 

  • Nriagu JO (1978) Production and uses of sulfur. In: Nriagu JO (ed) Sulfur in the environment, part 1: the atmospheric cycle. Wiley, New York, pp 1–21

    Google Scholar 

  • Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK, Prior RL, Huang D (2002) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as theprobe. J Agric Food Chem 50:2772

    Article  CAS  PubMed  Google Scholar 

  • Oyetunji OJ, Imade FN (2015) Effect of different levels of NaCl and Na2SO4 salinity on dry matter and ionic contents of cowpea (Vigna unguiculata L. Walp.). Afr J Agric Res 10:1239–1243

    Google Scholar 

  • Paek KY, Chandler S, Thorpe T (1988) Physiological effects of Na2SO4 and NaCl on callus cultures of Brassica campestris (Chinese cabbage). Physiol Planta 72:160–166

    Article  CAS  Google Scholar 

  • Pagter M, Bragato C, Malagoli M, Brix H (2009) Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Bot 90:43–51

    Article  CAS  Google Scholar 

  • Patil JM, Karadge BA (2017) Effect of Na2SO4 salinity on growth, chlorophyll content, polyphenols and proline contents of Trianthema portulacastrum L. Int J Adv Res 5:1670–1675

    Article  Google Scholar 

  • Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:406–432

    Google Scholar 

  • Pérez C, Anesini C (1994a) Antibacterial activity of alimentary plants against Staphylococcus aureus growth. Am J Chin Med 22:169–174

    Article  PubMed  Google Scholar 

  • Pérez C, Anesini C (1994b) In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J Ethnopharmacol 44:41–46

    Article  PubMed  Google Scholar 

  • Persia FA, Troncoso M, Rinaldini E, Simirgiotis MJ, Tapia A (2020) UHPLC–Q/Orbitrap/MS/MS fingerprinting and antitumoral effects of Prosopis strombulifera (LAM.) BENTH. aqueous extract on allograft colorectal and melanoma cancer models. Heliyon 6:1–11

    Article  Google Scholar 

  • Peterson A, Murphy K (2015) Tolerance of lowland quinoa cultivars to sodium chloride and sodium sulfate salinity. Crop Sci 55:331–338

    Article  CAS  Google Scholar 

  • Poljakoff-Mayber A (1975) Morphological and anatomical changes in plants as a response to salinity. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Berlin, pp 97–117

    Chapter  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  PubMed  Google Scholar 

  • Reginato M, Reinoso H, Llanes A, Luna V (2013) Stomatal abundance and distribution in Prosopis strombulifera plants growing under different iso-osmotic salt treatments. Am J Plant Sci 4:80–90

    Article  Google Scholar 

  • Reginato M, Castagna A, Furlán A, Castro S, Ranieri A, Luna V (2014a) Analysis of the oxidative damage in the halophyte Prosopis strombulifera salinized with NaCl and Na2SO4. Role of polyphenols as antioxidant protection. AoB Plants 6:plu042. https://doi.org/10.1093/aobpla/plu042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V (2014b) Na2SO4 and NaCl determine different growth responses and ion accumulation in the halophytic legume Prosopis strombulifera. Plant Biol 16:97–106

    Article  CAS  PubMed  Google Scholar 

  • Reginato M, Travaglia C, Reinoso H, Garello F, Luna V (2016) Anatomical modifications in the halophyte Prosopis strombulifera caused by salt mixture. Flora 218:75–85

    Article  Google Scholar 

  • Reginato M, Turcios A, Luna V, Papenbrock J (2019) Differential effects of NaCl and Na2SO4 on the halophyte Prosopis strombulifera are explained by different responses of photosynthesis and metabolism. Plant Physiol Biochem 141:306–314

    Article  CAS  PubMed  Google Scholar 

  • Reich M, Aghajanzadeh T, Stuiver CEE, Koralewska A, De Kok LJ (2015) Impact of sulfate salinity on the uptake and metabolism of sulfur in Chinese cabbage. In: De Kok LJ, Hawkesford MJ, Rennenberg H, Saito K, Schnug E (eds) Molecular physiology and ecophysiology of sulfur. Springer International Publishing, New York, pp 227–238

    Chapter  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411:319–332

    Article  CAS  PubMed  Google Scholar 

  • Reich M, Aghajanzadeh T, Parmar S, Hawkesford MJ, De Kok LJ (2018) Calcium ameliorates the toxicity of sulfate salinity in Brassica rapa. J Plant Physiol 231:1–8

    Article  CAS  PubMed  Google Scholar 

  • Reinoso H, Sosa L, Ramirez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628

    Article  Google Scholar 

  • Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 1:109–119

    Google Scholar 

  • Renault S, Croser C, Franklin J, Zwiazek J (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings. Plant Soil 233:261

    Article  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Annu Rev Plant Physiol 35:121–153

    Article  CAS  Google Scholar 

  • Rennenberg H (1989) Synthesis and emission of hydrogen sulfide by higher plants. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington, DC, pp 44–57

    Chapter  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer Academic Publishers, Netherlands, pp 181–204

    Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (1998) Variation in the growth of lucerne (Medicago sativa L.) in response to sulphate salinity. Plant Soil 202:271–280

    Article  CAS  Google Scholar 

  • Ruiz JM, Lopez-Cantarero I, Rivero R, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsiferous soils. Int J Phytoremediation 5:203–210

    Article  CAS  PubMed  Google Scholar 

  • Ryrie IJ, Jagendorf AT (1971) Inhibition of photophosphorylation in spinach chloroplasts by inorganic sulfate. J Biol Chem 246:582–688

    Article  CAS  PubMed  Google Scholar 

  • Saragusti A, Bustos P, Pierosan L, Chiabrando G (2012) Involvement of the l-arginine-nitric oxide pathway in the antinociception caused by fruits of Prosopis strombulifera (Lam.) Benth. J Ethnopharmacol 140:117–122

    Article  PubMed  Google Scholar 

  • Schmidt A (2005) Metabolic background of H2S release from plants. Landbauforschung Völkenrode Special Issue 283:121–129

    CAS  Google Scholar 

  • Selmar D, Kleinwächter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crops Products 42:558–566

    Article  CAS  Google Scholar 

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey R, Thomson WW (1994) An X-ray microanalysis study of the salt glands and intracellular calcium crystals of Tamarix. Ann Bot 73:307–313

    Article  CAS  Google Scholar 

  • Strogonov BP (1964) Physiological basis of salt tolerance of plants (as affected by various types of salinity). In: Poljakoff-Mayber A, Mayer AM (eds) Israel program for scientific translations, Jerusalem

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–93

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaâl M, Navari-Izzo F, Ouerghi Z (2012a) Changes in the antioxidative system of Ocimum basilicum L. (cv Fine) under different sodium salts. Act Physiol Plant 34:1873–1881. https://doi.org/10.1007/s11738-012-0985

    Article  CAS  Google Scholar 

  • Tarchoune I, Sgherri C, Baâtour O, Izzo R, Lachaâl M, Navari Izzo F, Ouerghi Z (2012b) Phenolic acids and total antioxidant activity in Ocimum basilicum L. grown under Na2SO4 medium. J Med Plant Res 6:5868–5875

    Google Scholar 

  • Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, Degl’Innocenti E, Giordano C, Massai R, Agati G (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol 167:457–470

    Article  CAS  PubMed  Google Scholar 

  • Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153

    Article  CAS  Google Scholar 

  • Toderich KN, Mamadrahimov AA, Khaitov BB, Karimov AA, Soliev AA, Nanduri KR, Shuyskaya EV (2020) Differential impact of salinity stress on seeds minerals, storage proteins, fatty acids, and squalene composition of new Quinoa genotype, grown in hyper-arid desert environments. Front Plant Sci 11:607102. https://doi.org/10.3389/fpls.2020.607102

    Article  PubMed  PubMed Central  Google Scholar 

  • Trelka T, Bres W, Politycka B, Starzyk J (2016) Influence of sodium chloride and sodium sulfate on zonal Pelargonium and microorganisms colonizing root environment. Bulgarian J Agric Sci 22:401–407

    Google Scholar 

  • Vigo C, Therios IN, Nastou A, Patakas A (2004) Changes in photosynthetic parameters and nutrient distribution in olive plants (Olea europaea L.) of cultivar Chondrolia Chalkidikis under NaCl—Na2SO4 and KCl salinities. Agris 46:33–46

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Warne P, Guy RD, Rollins L, Reid DM (1990) The effects of sodium sulphate and sodium chloride on growth, morphology, photosynthesis, and water use efficiency of Chenopodium rubrum. Can J Bot 68:999–1006

    Article  Google Scholar 

  • Weinberg RW, Lerner HR, Poljakoff-Mayber A (1984) Changes in growth and water-soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium salts. Physiol Plant 62:472–480

    Article  Google Scholar 

  • Wright G, Patten K, Drew M (1992) Salinity and supplemental calcium influence Growth of rabbiteye and southern highbush blueberry. J Am Soc Hort Sci 117:749–756

    Article  CAS  Google Scholar 

  • Wu G (2015) Nutritional properties of quinoa. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 193–210. https://doi.org/10.1002/9781118628041.ch11

    Chapter  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plantarum 58:214–222

    Article  CAS  Google Scholar 

  • Zaman B, Ali A, Salim M, Hussain K (2002) Growth of wheat as affected by sodium chloride and sodium sulphate salinity. Pakistan J Biol Sci 5:1313–1315

    Article  Google Scholar 

  • Zangerl AR, Arntz A, Berenbaum M (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Zhang XL, Li X, Ding JN, Zhu WX, Qi F, Zhang T, Tian Y, Sun GY (2012) Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings. Ying Yong Sheng Tai Xue Bao 23:625–631 (Chinese)

    PubMed  Google Scholar 

Download references

Acknowledgements

The collaboration and joints visits were funded by the PPP program for the project-related personal exchange of CONICET No. 2019-22669909 and the DAAD 57468556. We would like to thank Dr. Sascha Offermann, Hannover, for correcting the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Reginato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reginato, M., Luna, V. & Papenbrock, J. Current knowledge about Na2SO4 effects on plants: what is different in comparison to NaCl?. J Plant Res 134, 1159–1179 (2021). https://doi.org/10.1007/s10265-021-01335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01335-y

Keywords

Navigation