Skip to main content
Log in

Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The YABBY family is a class of plant-specific transcription factors comprising a typical N-terminal C2C2-type zinc finger domain and a C-terminal helix-loop-helix YABBY domain. YABBY transcription factors play important roles in multiple biological processes, including polarity establishment in plant leaves, the formation and development of reproductive organs, the response to plant hormone signals, resistance to stress, crop breeding and agricultural production. The aim of this review is to summarize our current understanding of the roles, functions and value of the YABBY family in plants, with particular emphasis on new insights into the molecular and physiological mechanisms involved in the YABBY-mediated modulation of polarity establishment, morphogenesis and development, and phytohormone and stress responses in plants. In addition, we propose that this transcription factor family presents great value and potential for research, application and development in crop breeding and agricultural production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez J, Smyth DR (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126:2377–2386

    CAS  Google Scholar 

  • Bartholmes C, Hidalgo O, Gleissberg S (2011) Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol 14:11–23

    Google Scholar 

  • Bartley GE, Ishida BK (2007) Ethylene-sensitive and insensitive regulation of transcription factor expression during in vitro tomato sepal ripening. J Exp Bot 58:2043–2051

    CAS  Google Scholar 

  • Baum SF, Eshed Y, Bowman JL (2001) The Arabidopsis nectary is an ABC-independent floral structure. Development 128:4657–4667

    CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Bio 3:17–22

    CAS  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    CAS  Google Scholar 

  • Cao X, Jiao Y (2020) Control of cell fate during axillary meristem initiation. Cell Mol Life Sci 77:2343–2354

    CAS  Google Scholar 

  • Cao Y, Lang ZH, Wang L (2015) Characteristics and expression analysis of transcription factor YABBY family in maize. J Agric Sci Technol-Iran 17:32–41

    CAS  Google Scholar 

  • Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development 126:2715–2726

    CAS  Google Scholar 

  • Chen XL, Liu SY, Sun T, Liu ZC, Tao JB, Zhao YX, Wang AX (2017) Bioinformatics analysis on YABBY gene family in tomato. J Northeast Agric Univ 48:11–19

    Google Scholar 

  • Chu YH, Jang JC, Huang Z, van der Knaap E (2019) Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct 3:1–20

    Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    CAS  Google Scholar 

  • Dai MQ, Hu YF, Zhao Y, Liu HF, Zhou DX (2007a) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144:380–390

    CAS  Google Scholar 

  • Dai MQ, Zhao Y, Ma Q, Hu YF, Hedden P, Zhang QF, Zhou DX (2007b) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121–133

    CAS  Google Scholar 

  • Du F, Jiao YL (2020) Mechanical control of plant morphogenesis: concepts and progress. Curr Opin Plant Biol 57:16–23

    CAS  Google Scholar 

  • Du F, Guan CM, Jiao YL (2018) Molecular mechanisms of leaf morphogenesis. Mol Plant 11:1117–1134

    CAS  Google Scholar 

  • Eckardt NA (2010) YABBY genes and the development and origin of seed plant leaves. Plant Cell 22:2103

    CAS  Google Scholar 

  • Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209

    CAS  Google Scholar 

  • Ferjani A, Hanai K, Gunji S, Maeda S, Sawa S, Tsukaya H (2015) Balanced cell proliferation and expansion is essential for flowering stem growth control. Plant Signal Behav 10:1–5

    Google Scholar 

  • Filyushin MA, Slugin MA, Dzhos EA, Kochieva EZ, Shchennikova AV (2018) Coexpression of YABBY1 and YABBY3 genes in lateral organs of tomato species (Solanum, Section Lycopersicon). Dokl Biochem Biophys 478:50–54

    CAS  Google Scholar 

  • Finet C, Floyd SK, Conway SJ, Zhong B, Scutt CP, Bowman JL (2016) Evolution of the YABBY gene family in seed plants. Evol Dev 18:116–126

    Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111:2367–2372

    CAS  Google Scholar 

  • Fukushima K, Hasebe M (2014) Adaxial–abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18

    Google Scholar 

  • Gallagher TL, Gasser CS (2008) Independence and interaction of regions of the INNER NO OUTER protein in growth control during ovule development. Plant Physiol 147:306–315

    CAS  Google Scholar 

  • Gasser CS, Skinner DJ (2019) Development and evolution of the unique ovules of flowering plants. Curr Top Dev Biol 131:373–399

    Google Scholar 

  • Ge M, Lv YD, Zhang TF, Li T, Zhang XL, Zhao H (2014) Genome-wide identification and analysis of YABBY gene family in maize. Jiangsu J Agr Sci 30:1267–1272

    Google Scholar 

  • Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670

    CAS  Google Scholar 

  • Gross T, Broholm S, Becker A (2018) CRABS CLAW acts as a bifunctional transcription factor in flower development. Front Plant Sci 9:835

    Google Scholar 

  • Han X, Yin L, Xue H (2012) Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis. J Integr Plant Biol 54:486–499

    CAS  Google Scholar 

  • Hirayama Y, Yamada T, Oya Y, Ito M, Kato M, Imaichi R (2007) Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology. Dev Genes Evol 217:363–372

    CAS  Google Scholar 

  • Hou H, Wu P, Gao L, Zhang C, Hou X (2019) Characterization and expression profile analysis of YABBY family genes in Pak-choi (Brassica rapa ssp. chinensis) under abiotic stresses and hormone treatments. Plant Growth Regul 87:421–432

    CAS  Google Scholar 

  • Huang Z, Houten JV, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129

    CAS  Google Scholar 

  • Jang S, Hur J, Kim SJ, Han MJ, Kim SR, An G (2004) Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol 56:133–143

    CAS  Google Scholar 

  • Jiao Y (2019) Designing plants: modeling ideal shapes. Mol Plant 12:130–132

    CAS  Google Scholar 

  • Kanaya E, Nakajima N, Okada K (2002) Non-sequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA. J Biol Chem 277:11957–11964

    CAS  Google Scholar 

  • Kumaran MK, Bowman JL, Sundaresan V (2002) YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14:2761–2770

    CAS  Google Scholar 

  • Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, Bowman JL (2005) Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. Plant Cell 17:25–36

    CAS  Google Scholar 

  • Li XB, Yang CC, Qiu NW (2012) Bioinformatic analysis of YABBY protein family in Arabidopsis and Chinese cabbage. Shandong Agric Sci 44:1–6

    CAS  Google Scholar 

  • Lin ZW, Li XR, Shannon LM, Yeh CT, Wang ML, Bai GH, Peng Z, Li JR, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu JM (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724

    CAS  Google Scholar 

  • Liu HL, Xu YY, Xu ZH, Chong K (2007) A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol 217:629–637

    CAS  Google Scholar 

  • Liu XF, Ning K, Che G, Yan SS, Han LJ, Gu R, Li Z, Weng YQ, Zhang XL (2018) CsSPL functions as an adaptor between HD-ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus (cucumber). Plant J 94:535–547

    CAS  Google Scholar 

  • Lv S, Wu W, Wang M, Meyer RS, Ndjiondjop M, Tan L, Zhou H, Zhang J, Fu Y, Cai H, Sun H, Wing RA, Zhu Z (2018) Genetic control of seed shattering during African rice domestication. Nat Plants 4:331–337

    CAS  Google Scholar 

  • Lv B, Yan Z, Tian H, Zhang X, Ding Z (2019) Local auxin biosynthesis mediates plant growth and development. Trends Plant Sci 24:6–9

    CAS  Google Scholar 

  • Maeda S, Gunji S, Hanai K, Hirano T, Kazama Y, Ohbayashi I, Abe T, Sawa S, Tsukaya H, Ferjani A (2014) The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis. Plant Cell Physiol 55:1994–2007

    CAS  Google Scholar 

  • Muños S, Ranc N, Botton E, Bérard A, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    CAS  Google Scholar 

  • Navarro C, Efremova N, Golz JF, Rubiera R, Schwarz-Sommer Z (2004) Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Development 131:3649–3659

    CAS  Google Scholar 

  • Nurani AM, Ozawa Y, Furuya T, Sakamoto Y, Ebine K, Matsunaga S, Ueda T, Fukuda H, Kondo Y (2020) Deep imaging analysis in VISUAL reveals the role of YABBY genes in vascular stem cell fate determination. Plant Cell Physiol 61:255–264

    CAS  Google Scholar 

  • Ohmori Y, Abiko M, Horibata A, Hirano HY (2008) A transposon, Ping, is integrated into intron 4 of the DROOPING LEAF gene of rice, weakly reducing its expression and causing a mild drooping leaf phenotype. Plant Cell Physiol 49:1176–1184

    CAS  Google Scholar 

  • Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano HY (2011) Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J 65:77–86

    CAS  Google Scholar 

  • Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, de Albuquerque Melo Filho P, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49

    CAS  Google Scholar 

  • Rodríguez GR, Muños S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Google Scholar 

  • Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    CAS  Google Scholar 

  • Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL (2010) Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 22:2113–2130

    CAS  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) Filamentous flower, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    CAS  Google Scholar 

  • Shao HX, Chen HF, Zhang D, Wu HQ, Zhao CP, Han MY (2017) Identification, evolution and expression analysis of the YABBY gene family in apple (Malus × domestica Borkh.). Acta Agric Zhejiangensis 29:1129–1138

    Google Scholar 

  • Shchennikova AV, Slugina MA, Beletsky AV, Filyushin MA, Mardanov AA, Shulga OA, Kochieva EZ, Ravin NV, Skryabin KG (2018) The YABBY genes of leaf and leaf-like organ polarity in leafless plant Monotropa hypopitys. Int J Genom 2018:1–16

    Google Scholar 

  • Shi B, Guo X, Wang Y, Xiong Y, Wang J, Hayashi K, Lei J, Zhang L, Jiao Y (2018) Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev Cell 44:204–216

    CAS  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    CAS  Google Scholar 

  • Simon MK, Skinner DJ, Gallagher TL, Gasser CS (2017) Integument development in Arabidopsis depends on interaction of YABBY protein INNER NO OUTER with coactivators and corepressors. Genetics 207:1489–1500

    CAS  Google Scholar 

  • Stahle MI, Kuehlich J, Staron L, von Arnim AG, Golz JF (2009) YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell 21:3105–3118

    CAS  Google Scholar 

  • Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, Buckler ES, Vollbrecht E (2017) Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29:1622–1641

    CAS  Google Scholar 

  • Sugiyama S, Yasui Y, Ohmori S, Tanaka W, Hirano H (2019) Rice flower development revisited: regulation of carpel specification and flower meristem determinacy. Plant Cell Physiol 60:1284–1295

    CAS  Google Scholar 

  • Sun M, Li H, Li Y, Xiang H, Liu Y, He Y, Qi M, Li T (2020) Tomato YABBY2b controls plant height through regulating indole-3-acetic acid-amido synthetase (GH38) expression. Plant Sci 297:110530

  • Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano HY (2012) The YABBY gene TONGARI-BOUSHI1 is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. Plant Cell 24:80–95

    CAS  Google Scholar 

  • Tanaka W, Toriba T, Hirano H (2017) Three TOB1-related YABBY genes are required to maintain proper function of the spikelet and branch meristems in rice. New Phytol 215:825–839

    CAS  Google Scholar 

  • Tian C, Wang Y, Yu H, He J, Wang J, Shi B, Du Q, Provart NJ, Meyerowitz EM, Jiao Y (2019) A gene expression map of shoot domains reveals regulatory mechanisms. Nat Commun 10:141

    Google Scholar 

  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genom 277:457–468

    CAS  Google Scholar 

  • Toriba T, Ohmori Y, Hirano HY (2011) Common and distinct mechanisms underlying the establishment of adaxial and abaxial polarity in stamen and leaf development. Plant Signal Behav 6:430–433

    CAS  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F, Town CD (2013) Update on legume transcription factors legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang ZJ, Keyhaninejad N, Mu Q, Sun L, Wang YP, Wu S (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    Google Scholar 

  • Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS (1999) INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Gene Dev 13:3160–3169

    CAS  Google Scholar 

  • Wang Y, Jiao Y (2018a) Auxin and above-ground meristems. J Exp Bot 69:147–154

    CAS  Google Scholar 

  • Wang Y, Jiao Y (2018b) Axillary meristem initiation-a way to branch out. Curr Opin Plant Biol 41:61–66

    Google Scholar 

  • Wang A, Tang J, Li D, Chen C, Zhao X, Zhu L (2009) Isolation and functional analysis of LiYAB1, a YABBY family gene, from lily (Lilium longiflorum). J Plant Physiol 166:988–995

    CAS  Google Scholar 

  • Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R (2016) Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnol J 14:1619–1632

    CAS  Google Scholar 

  • Xia ML, Tang DY, Yang YZ, Li YX, Wang WW, Lv H, Liu XM, Lin JZ (2017) Preliminary study on the rice OsYABBY6 gene involving in the regulation of leaf development. Life Sci Res 21:23–30

    Google Scholar 

  • Xiang J, Liu RQ, Li TM, Han LJ, Zou Y, Xu TF, Wei JY, Wang YJ, Xu Y (2013) Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata. Protoplasma 250:1315–1325

    CAS  Google Scholar 

  • Xiong Y, Jiao Y (2019) The diverse roles of auxin in regulating leaf development. Plants-Basel 8:243

    CAS  Google Scholar 

  • Xu C, Liberatore KL, Macalister CA, Huang Z, Chu YH, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman ZB (2015a) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792

    CAS  Google Scholar 

  • Xu ZZ, Ni WC, Zhang XG, Guo Q, Xu P, Shen XL (2015b) Genome-wide analysis of the YABBY gene family in cotton. Biotechnol Bull 31:146–152

    Google Scholar 

  • Yamada T, Yokota S, Hirayama Y, Imaichi R, Kato M, Gasser CS (2011) Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J 67:26–36

    CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    CAS  Google Scholar 

  • Yang C, Ma Y, Li J (2016a) The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J Exp Bot 18:5545–5556

    Google Scholar 

  • Yang CJ, Kursel LE, Studer AJ, Bartlett ME, Whipple CJ (2016) A gene for genetic background in Zea mays: fine-mapping enhancer of teosinte branched1.2 (etb1.2) to a YABBY class transcription factor. Genetics 204:1573

  • Yang Z, Gong Q, Wang L, Jin Y, Xi J, Li Z, Qin W, Yang Z, Lu L, Chen Q, Li F (2018) Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front Genet 9:33

    Google Scholar 

  • Yang H, Shi G, Li X, Hu D, Cui Y, Hou J, Yu D, Huang F (2019) Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana. BMC Plant Biol 19:234

    Google Scholar 

  • Zhang S, Wang L, Sun X, Li Y, Yao J, Nocker S, Wang X (2019) Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Front Plant Sci 10:1207

    CAS  Google Scholar 

  • Zhao W, Su HY, Song J, Zhao XY, Zhang XS (2006) Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Sci 170:364–371

    CAS  Google Scholar 

  • Zhao W, Su HY, Wang L (2009a) Bioinformatics analysis of YABBY genes from wheat. Mod Agr Sci Technol 7:139–141

    Google Scholar 

  • Zhao W, Su HY, Wang L, Zhang XS (2009b) Cloning and expression analysis of TaCRC in Triticum aestivum. Acta Bot Boreal-Occident Sin 29:1298–1302

    CAS  Google Scholar 

  • Zhao XY, Xie HT, Chen YB, Wang SS, Zhang XS (2012) Ectopic expression of TaYAB2, a member of YABBY gene family in wheat, causes partial abaxialization of adaxial epidermises of leaves in Arabidopsis. Acta Agron Sin 38:2042–2051

    CAS  Google Scholar 

  • Zhao SP, Lu D, Yu TF, Ji YJ, Zheng WJ, Zhang SX, Chai SC, Chen ZY, Cui XY (2017) Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiol Bioch 119:132–146

    CAS  Google Scholar 

  • Zsogon A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31470341, 31870216) and the State Key Basic Research and Development Plan of China (2015CB150105).

Author information

Authors and Affiliations

Authors

Contributions

TZ conceived, performed the literature search, and wrote the manuscript. CL investigated, performed data analysis, and contributed to modify the manuscript. DL and YL discussed the results and modified the manuscript. XY: conceived, designed, critically revised, and supervised this work. All authors have reviewed and approved the final manuscript.

Corresponding author

Correspondence to Xinghong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, C., Li, D. et al. Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. J Plant Res 133, 751–763 (2020). https://doi.org/10.1007/s10265-020-01227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01227-7

Keywords

Navigation