Skip to main content

Advertisement

Log in

Semiparametric transformation model in presence of cure fraction: a hierarchical Bayesian approach assuming the unknown hazards as latent factors

  • Review Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The class of semiparametric or transformation models has been presented in the literature as a promising alternative for the analysis of lifetime data in the presence of covariates and censored data. This class of models generalizes the popular class of proportional hazards models proposed by Cox (J R Stat Soc: Ser B (Methodol) 34(2):187–202, 1972) where it is not needed to assume a parametric probability distribution for the survival times. In addition to our focus on semipametric models, we also explore the situation where the population of interest is a mixture of susceptible individuals, who experience the event of interest and non-susceptible individuals that will never experience the event of interest. These individuals are not at risk with respect to the event of interest and are considered immune, non-susceptible, or cured. In this study, we present a simple method to obtain inferences for the parameters of semiparametric or transformation models in the presence of censoring, covariates and cure fraction under a Bayesian approach assuming the unknown hazard rates as latent variables with a given probability distribution. The posterior summaries of interest are obtained using existing Markov Chain Monte Carlo (MCMC) simulation methods. Some applications with real medical survival data illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics series 55. tenth printing

  • Achcar JA, Coelho-Barros EA, Mazucheli J (2012) Cure fraction models using mixture and non-mixture models. Tatra Mt Math Publ 51(1):1–9

    MathSciNet  Google Scholar 

  • Aitkin M (1991) Posterior Bayes factors. J Roy Stat Soc: Ser B (Methodol) 53(1):111–128

    Google Scholar 

  • Bennett S (1983) Analysis of survival data by the proportional odds model. Stat Med 2(2):273–277

    Article  Google Scholar 

  • Bernardo JM, Smith AF (2009) Bayesian theory. Wiley, London

    Google Scholar 

  • Berry DA, Berry DA (1996) Statistics: a Bayesian perspective. Duxbury Press Belmont, CA

    Google Scholar 

  • Box GE, Tiao GC (2011) Bayesian inference in statistical analysis. Wiley, London

    Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    MathSciNet  Google Scholar 

  • Brooks SP, Roberts GO (1998) Convergence assessment techniques for Markov Chain Monte Carlo. Stat Comput 8:319–335

    Article  Google Scholar 

  • Brooks SP, Roberts GO (1999) Miscellanea on quantile estimation and Markov Chain Monte Carlo convergence. Biometrika 86(3):710–717

    Article  MathSciNet  Google Scholar 

  • Carlin BP, Louis TA (2008) Bayesian methods for data analysis. CRC Press

  • Chen Jin Z, Ying Z (2002) Semiparametric analysis of transformation models with censored data. Biometrika 89(3):659–668

    Article  MathSciNet  Google Scholar 

  • Chen Lin D, Zeng D (2012) Checking semiparametric transformation models with censored data. Biostatistics 13(1):18–31

    Article  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49(4):327–335

    Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov Chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91(434):883–904

    Article  MathSciNet  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc: Ser B (Methodol) 34(2):187–202

    MathSciNet  Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62(2):269–276

    Article  MathSciNet  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, New York

    Google Scholar 

  • Demarqui FN, Mayrink VD, Ghosh SK (2019) An unified semiparametric approach to model lifetime data with crossing survival curves. arXiv preprint arXiv:1910.04475

  • Farewell VT (1982) The use of mixture models for the analysis of survival of survival data with long-term survivors. Biometrics 38(4):1041–1046

    Article  Google Scholar 

  • Freireich B, J E, Gehan E, et al (1963) The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood 21(6):699–716

  • Gao F, Zeng D, Lin DY (2018) Semiparametric regression analysis of interval-censored data with informative dropout. Biometrics 74(4):1213–1222

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Smith AF (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  MathSciNet  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, et al (1995) Bayesian data analysis. Chapman and Hall/CRC

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Bayesian Stat 4:641–649

    Google Scholar 

  • Gilks WR, Richardson E, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC

  • Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81(3):515–526

    Article  MathSciNet  Google Scholar 

  • Guo S, Zeng D (2014) An overview of semiparametric models in survival analysis. J Stat Plan Inference 151:1–16

    Article  MathSciNet  Google Scholar 

  • He W, Yi GY (2020) Parametric and semiparametric estimation methods for survival data under a flexible class of models. Lifetime Data Anal 26:369–388

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2011) The statistical analysis of failure time data. Wiley, London

    Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  MathSciNet  Google Scholar 

  • Kass RE, Carlin BP, Gelman A et al (1998) Markov chain monte carlo in practice: a roundtable discussion. Am Stat 52(2):93–100

    MathSciNet  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data. Springer, Berlin

    Book  Google Scholar 

  • Lai CD, Lai CD (2014) Generalized Weibull distributions. Springer, Berlin

    Book  Google Scholar 

  • Lambert PC (2007) Modeling of the cure fraction in survival studies. Stand Genomic Sci 7(3):351–375

    Google Scholar 

  • Lambert PC, Thompson JR, Weston CL et al (2007) Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics 8(3):576–594

    Article  Google Scholar 

  • Lawless JF (1982) Statistical model and method for lifetime data. Willey: London

  • Lee ET, Wang J (2003) Statistical methods for survival data analysis. Wiley, London

    Book  Google Scholar 

  • Lee PM (2012) Bayesian statistics: an introduction. Fourth Edition. Wiley, London

  • Li J, Yu T, Lv J et al (2021) Semiparametric model averaging prediction for lifetime data via hazards regression. J R Stat Soc: Ser C: Appl Stat 70(5):1187–1209

    Article  MathSciNet  Google Scholar 

  • Lin Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81(1):61–71

    Article  MathSciNet  Google Scholar 

  • Lin Wei LJ, Yang I et al (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc: Ser B (Stat Methodol) 62(4):711–730

    Article  MathSciNet  Google Scholar 

  • Lin Wei L, Ying Z (2001) Semiparametric transformation models for point processes. J Am Stat Assoc 96(454):620–628

    Article  MathSciNet  Google Scholar 

  • Ma S, Kosorok MR (2005) Penalized log-likelihood estimation for partly linear transformation models with current status data. Ann Stat 33(5):2256–2290

    Article  MathSciNet  Google Scholar 

  • Maller RA, Zhou X (1996) Survival analysis with long-term survivors. Wiley, New York

    Google Scholar 

  • Martinez EZ, Achcar JA, Jácome AA et al (2013) Mixture and non-mixture cure fraction models based on the generalized modified weibull distribution with an application to gastric cancer data. Comput Methods Programs Biomed 112(3):343–355

    Article  Google Scholar 

  • Oliveira RP, Achcar JA, Peralta D et al (2019) Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. J Appl Stat 46(3):449–467

    Article  MathSciNet  Google Scholar 

  • Othus M, Barlogie B, LeBlanc ML et al (2012) Cure models as a useful statistical tool for analyzing survival. Clin Cancer Res 18(14):3731–3736

    Article  Google Scholar 

  • Price DL, Manatunga AK (2001) Modelling survival data with a cured fraction using frailty models. Stat Med 20(9–10):1515–1527

    Article  Google Scholar 

  • Race JA, Pennell ML (2021) Semi-parametric survival analysis via dirichlet process mixtures of the first hitting time model. Lifetime Data Anal 27:177–194

    Article  MathSciNet  Google Scholar 

  • Raftery AE, Lewis S et al (1992) How many iterations in the Gibbs sampler. Bayesian Stat 4(2):763–773

    Article  Google Scholar 

  • Ripley BD (2009) Stochastic simulation. Wiley, London

    Google Scholar 

  • Rossini A, Tsiatis A (1996) A semiparametric proportional odds regression model for the analysis of current status data. J Am Stat Assoc 91(434):713–721

    Article  MathSciNet  Google Scholar 

  • Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69(1):239–241

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  Google Scholar 

  • Selingerova I, Katina S, Horova I (2021) Comparison of parametric and semiparametric survival regression models with kernel estimation. J Stat Comput Simul 91(13):2717–2739

    Article  MathSciNet  Google Scholar 

  • Song X, Wang C (2008) Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 64(2):557–566

    Article  MathSciNet  Google Scholar 

  • Song X, Davidian M, Tsiatis AA (2002) A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58(4):742–753

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter (2003) Winbugs version 1.4 user manual. MRC Biostatistics Unit, Cambridge http://www.mrc-bsu.cam.ac.uk/bugs 54

  • Spiegelhalter DJ, Best NG, Carlin BP et al (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64(4):583–639

    Article  MathSciNet  Google Scholar 

  • Sun J, Sun L (2005) Semiparametric linear transformation models for current status data. Can J Stat 33(1):85–96

    Article  MathSciNet  Google Scholar 

  • Tsodikov A, Ibrahim JG, Yakovlev A (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98(464):1063–1078

    Article  MathSciNet  Google Scholar 

  • Yang Niu XF (2021) Semi-parametric models for longitudinal data analysis. J Finance Econ 9(3):93–105

    Article  Google Scholar 

  • Yang Prentice R (2005) Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika 92(1):1–17

    Article  MathSciNet  Google Scholar 

  • Yin G, Ibrahim JG (2005) Cure rate models: a unified approach. Can J Stat 33(4):559–570

    Article  MathSciNet  Google Scholar 

  • Zeng D, Cai J (2010) A semiparametric additive rate model for recurrent events with an informative terminal event. Biometrika 97(3):699–712

    Article  MathSciNet  Google Scholar 

  • Zeng D, Lin D (2009) Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics 65(3):746–752

    Article  MathSciNet  Google Scholar 

  • Zeng D, Yin G, Ibrahim JG (2005) Inference for a class of transformed hazards models. J Am Stat Assoc 100(471):1000–1008

    Article  MathSciNet  Google Scholar 

  • Zeng D, Lin D, Lin X (2008) Semiparametric transformation models with random effects for clustered failure time data. Stat Sin 18(1):355

    MathSciNet  Google Scholar 

  • Zeng D, Mao L, Lin D (2016) Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103(2):253–271

    Article  MathSciNet  Google Scholar 

  • Zhou Q, Hu T, Sun J (2017) A sieve semiparametric maximum likelihood approach for regression analysis of bivariate interval-censored failure time data. J Am Stat Assoc 112(518):664–672

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson Barili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achcar, J.A., Barili, E. Semiparametric transformation model in presence of cure fraction: a hierarchical Bayesian approach assuming the unknown hazards as latent factors. Stat Methods Appl (2023). https://doi.org/10.1007/s10260-023-00734-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10260-023-00734-w

Keywords

Navigation