Skip to main content
Log in

Backtesting VaR and expectiles with realized scores

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Several statistical functionals such as quantiles and expectiles arise naturally as the minimizers of the expected value of a scoring function, a property that is called elicitability (see Gneiting in J Am Stat Assoc 106:746–762, 2011 and the references therein). The existence of such scoring functions gives a natural way to compare the accuracy of different forecasting models, and to test comparative hypotheses by means of the Diebold–Mariano test as suggested in a recent work. In this paper we suggest a procedure to test the accuracy of a quantile or expectile forecasting model in an absolute sense, as in the original Basel I backtesting procedure of value-at-risk. To this aim, we study the asymptotic and finite-sample distributions of empirical scores for normal and uniform i.i.d. samples. We compare on simulated data the empirical power of our procedure with alternative procedures based on empirical identification functions (i.e. in the case of VaR the number of violations) and we find an higher power in detecting at least misspecification in the mean. We conclude with a real data example where both backtesting procedures are applied to AR(1)–Garch(1,1) models fitted to SP500 logreturns for VaR and expectiles’ forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acerbi C, Szekely B (2014) Backtesting expected shortfall. Risk Mag 27:76–81

    Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203–228

    MathSciNet  MATH  Google Scholar 

  • Bellini F (2012) Isotonicity results for generalized quantiles. Stat Prob Lett 82:2017–2024

    Article  MATH  Google Scholar 

  • Bellini F, Bignozzi V (2014) On elicitable risk measures. Quant Finance 15:725–733

    Article  MathSciNet  MATH  Google Scholar 

  • Bellini F, Di Bernardino E (2017) Risk management with expectiles. Eur J Finance 23(6):487–506

    Article  Google Scholar 

  • Bellini F, Klar B, Muller A (2014) Generalized quantiles as risk measures. Insur Math Econ 54:41–48

    Article  MathSciNet  MATH  Google Scholar 

  • Berkowitz J (2001) Testing the accuracy of density forecasts, applications to risk management. J Bus Econ Stat 19:465–474

    Article  Google Scholar 

  • Campbell SD (2005) A review of backtesting and backtesting procedures. Finance and Economics Discussion Series, Federal Reserve Board, 21

  • Christoffersen PF (1998) Evaluating interval forecasts. Int Econ Rev 39:841–862

    Article  MathSciNet  Google Scholar 

  • Christoffersen PF, Pelletier D (2004) Backtesting value-at-risk: a duration-based approach. J Financ Econom 2:84–108

    Article  Google Scholar 

  • Corbetta J, Peri I (2016) A new approach to backtesting and risk model selection. Preprint, ssrn.com/abstract=2796253

  • Delbaen F, Bellini F, Bignozzi V, Ziegel J (2016) Risk measures with the CxLS property. Finance Stoch 20(2):433–453

    Article  MathSciNet  MATH  Google Scholar 

  • Ehm W, Gneiting T, Jordan A, Krüger F (2016) Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings. J R Stat Soc Ser B 78(3):505–562

    Article  MathSciNet  Google Scholar 

  • Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. Ann Stat 44(4):1680–1707

    Article  MathSciNet  MATH  Google Scholar 

  • Fissler T, Ziegel JF, Gneiting T (2016) Expected shortfall is jointly elicitable with value at risk—implications for backtesting. Risk Mag 2016:58–611

    Google Scholar 

  • Gneiting T (2011) Making and evaluating point forecasts. J Am Stat Assoc 106:746–762

    Article  MathSciNet  MATH  Google Scholar 

  • Holzmann H, Eulert M (2014) The role of the information set for forecasting—with applications to risk management. Ann Appl Stat 8(1):595–621

    Article  MathSciNet  MATH  Google Scholar 

  • Kerkhof J, Melenberg B (2004) Backtesting for risk-based regulatory capital. J Bank Finance 28:1845–1865

    Article  Google Scholar 

  • Kupiec P (1995) Techniques for verifying the accuracy of risk measurement models. J Deriv 3:73–84

    Article  Google Scholar 

  • Lopez JA (1999a) Evaluation of value-at-risk models. J. Risk 1:37–64

    Article  Google Scholar 

  • Lopez JA (1999b) Methods for evaluating value-at-risk models. Federal Reserve Bank San Franc Econ Rev 2:3–17

    Google Scholar 

  • Macneil AJ, Frey R (2000) Estimation of tail-related risk measures for heteroschedastic financial time series: an extreme value approach. J Empir Finance 7:271–300

    Article  Google Scholar 

  • Newey W, Powell J (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):819–847

    Article  MathSciNet  MATH  Google Scholar 

  • Nolde N, Ziegel J (2016) Elicitability and backtesting. Preprint. arXiv:1608.05498

  • Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Trans Neural Netw 11:1263–1271

    Article  Google Scholar 

  • Thomson W (1979) Eliciting production possibilities from a well-informed manager. J Econ Theory 20(3):360–380

    Article  MathSciNet  MATH  Google Scholar 

  • Weber S (2006) Distribution-invariant risk measures, information and dynamic consistency. Math Finance 16:419–441

    Article  MathSciNet  MATH  Google Scholar 

  • Wong WK (2010) Backtesting value-at-risk based on tail losses. J Empir Finance 17:526–538

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank an anomimous referee that with her or his comments and remarks has contributed to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Negri.

Appendix

Appendix

We report in this Appendix the explicit computation of the expected values and variances of piecewise linear and quadratic scores and identification function in the normal and uniform cases. That is, we compute the quantities \(E[S^{(v)}(x,Y)]\), \(E\left[ S^{(e)}(x,Y)\right] \), \(E[I^{(v)}(x,Y)]\), \(E[I^{(e)}(x,Y)]\) and the corresponding variances when \(Y\sim N(0,1)\) and \(Y \sim U(0,1)\). We denote with \(\phi (x)\), \(\varPhi (x)\) and \({\overline{\varPhi }}(x)\) the density, the cumulative and the retro-cumulative function of a standard normal r.v.

The following identities will be repeatedly used:

$$\begin{aligned} \int _{-\infty }^{x}y\phi (y)dy&=-\,\phi (x), \int _{x}^{+\infty }y\phi (y)dy=\phi (x) \\ \int _{-\infty }^{x}y^{2}\phi (y)dy&=\varPhi (x)-x\phi (x), \int _{x}^{+\infty }y^{2}\phi (y)dy={\overline{\varPhi }}(x)+x\phi (x) \\ \int _{-\infty }^{x}y^{3}\phi (y)dy&=-\,x^{2}\phi (x)-2\phi (x), \int _{x}^{+\infty }y^{3}\phi (y)dy=x^{2}\phi (x)+2\phi (x) \\ \int _{-\infty }^{x}y^{4}\phi (y)dy&=-\,x^{3}\phi (x)+3\left[ \varPhi (x)-x\phi (x) \right] \\ \int _{x}^{+\infty }y^{4}\phi (y)dy&=x^{3}\phi (x)+3\left[ {\overline{\varPhi }} (x)+x\phi (x)\right] \end{aligned}$$

Piecewise linear score, normal case

$$\begin{aligned} E[S^{(v)}(x,Y)]= & {} \alpha \int _{x}^{+\infty }(y-x)\phi (y)dy+(1-\alpha )\int _{-\infty }^{x}(x-y)\phi (y)dy\\= & {} \alpha [\phi (x)-x\overline{\varPhi }(x)]+(1-\alpha )[x\varPhi (x)+\phi (x)]\\= & {} \phi (x)+x[\varPhi (x)-\alpha ]. \end{aligned}$$

When \(x=z_{\alpha }\), we get

$$\begin{aligned} E[S^{(v)}(z_{\alpha },Y)]= & {} \phi (z_{\alpha })\text {.}\\ E\left[ S^{(v)}(x,Y)^2\right]= & {} \int _{-\infty }^{+\infty }\left[ \alpha (y-x)_{+}+(1-\alpha )(y-x)_{-}\right] ^{2}\phi (y)dy \\= & {} \alpha ^{2}\int _{x}^{+\infty }(y-x)^{2}\phi (y)dy+(1-\alpha )^{2}\int _{-\infty }^{x}(y-x)^{2}\phi (y)dy \\= & {} \alpha ^{2}\left\{ {\overline{\varPhi }}(x)-x\phi (x)+x^{2}{\overline{\varPhi }} (x)\right\} \\&+(1-\alpha )^{2}\left\{ \varPhi (x)+x\phi (x)+x^{2}\varPhi (x)\right\} \\= & {} \left[ 1+x^{2}\right] \left\{ \alpha ^{2}+(1-2\alpha )\varPhi (x)\right\} +(1-2\alpha )x\phi (x)\text {.} \end{aligned}$$

When \(x=z_{\alpha }\), we get

$$\begin{aligned} E\left[ S^{(v)}(x,Y)^2\right]&=\left[ 1+z_{\alpha }^{2}\right] \left\{ \alpha -\alpha ^{2}\right\} +(1-2\alpha )z_{\alpha }\phi (z_{\alpha })\\ { Var}[(S^{(v)}(z_{\alpha },Y)]&=E\left[ S^{(v)}(x,Y)^2\right] -\phi ^{2}(z_{\alpha }) \\&=\alpha (1-\alpha )(1+z_{\alpha }^{2})+(1-2\alpha )z_{\alpha }\phi (z_{\alpha })-\phi ^{2}(z_{\alpha }). \end{aligned}$$

Piecewise quadratic score, normal case

$$\begin{aligned} E\left[ S^{(e)}(x,Y)\right]&=\alpha \int _{x}^{+\infty }(y-x)^{2}\phi (y)dy+(1-\alpha )\int _{-\infty }^{x}(x-y)^{2}\phi (y)dy \\&= \alpha [{\overline{\varPhi }}(x)+x\phi (x)+x^{2}\overline{\varPhi } (x)-2x\phi (x)] \\&\quad +(1-\alpha )[\varPhi (x)-x\phi (x)+x^{2}\varPhi (x)+2x\phi (x)] \\&=(1-2\alpha )x\phi (x)+(1+x^{2})[\alpha \overline{\varPhi }(x)+(1-\alpha )\varPhi (x)].\\ E\left[ S^{(e)}(x,Y)^2\right]&=\int _{-\infty }^{+\infty }\left[ \alpha (y-x)_{+}^{2}+(1-\alpha )(y-x)_{-}^{2}\right] ^{2}\phi (y)dy \\&=\int _{x}^{+\infty }\alpha ^{2}(y-x)^{4}\phi (y)dy+\int _{-\infty }^{x}(1-\alpha )^{2}(y-x)^{4}\phi (y)dy.\\ \end{aligned}$$

Now we have for the first term:

$$\begin{aligned} \int _{x}^{+\infty }(y-x)^{4}\phi (y)dy= & {} x^{3}\phi (x)+3\left[ {\overline{\varPhi }}(x)+x\phi (x)\right] -4x\left[ x^{2}\phi (x)+2\phi (x)\right] \\&+\,6x^{2}\left[ {\overline{\varPhi }}(x)+x\phi (x) \right] -4x^{3}\phi (x)+x^{4}{\overline{\varPhi }}(x)\\= & {} {\overline{\varPhi }}(x)\left[ 3+6x^{2}+x^{4}\right] -5x\phi (x)-x^{3}\phi (x). \end{aligned}$$

Similarly for the second term:

$$\begin{aligned} \int _{-\infty }^{x}(y-x)^{4}\phi (y)dy= & {} -x^{3}\phi (x)+3\left[ \varPhi (x)-x\phi (x)\right] -4x\left[ -x^{2}\phi (x)-2\phi (x)\right] \\&+\,6x^{2}\left[ \varPhi (x)-x\phi (x)\right] -4x^{3}\left[ -\phi (x)\right] +x^{4}\varPhi (x) \\= & {} \varPhi (x)\left[ 3+6x^{2}+x^{4}\right] +x^{3}\phi (x)+5x\phi (x). \end{aligned}$$

Summing up, we get

$$\begin{aligned} E\left[ S^{(e)}(x,Y)^2\right]= & {} \left( 3+6x^{2}+x^{4}\right) \left( \alpha ^{2}-2\alpha \varPhi (x)+\varPhi (x)\right) \\&+\,(1-2\alpha )\left( 5x\phi (x)+x^{3}\phi (x)\right) \end{aligned}$$

When \(x=e_{\alpha }\), we get

$$\begin{aligned} { Var}\left[ S^{(e)}(e_{\alpha },Y)\right]= & {} \left( 3+6e_{\alpha }^{2}+e_{\alpha }^{4}\right) \left( \alpha ^{2}-2\alpha \varPhi (e_{\alpha })+\varPhi (e_{\alpha })\right) \\&+(1-2\alpha )\left( 5 e_{\alpha } \phi (e_{\alpha })+e_{\alpha }^{3}\phi (e_{\alpha })\right) +\\&- \left( (1-2\alpha ) e_{\alpha } \phi (e_{\alpha })+\left( 1+e_{\alpha }^{2}\right) \left( \alpha {\overline{\varPhi }}(e_{\alpha })+(1\!-\!\alpha )\varPhi (e_{\alpha })\right) \right) ^{2}. \end{aligned}$$

Identification function, normal case. Recall that

$$\begin{aligned} I^{(e)}(Y,e)=\alpha (Y-e)_{+}-(1-\alpha )(Y-e)_{-}. \end{aligned}$$

Since \(E[I^{(e)}(Y,e_\alpha )] =0\), we get

$$\begin{aligned} { Var}[I^{(e)}(Y,e_\alpha )]&=\alpha ^{2}\int _{\varepsilon }^{+\infty }(y-e_\alpha )^{2}\phi (y)dy+(1-\alpha )^{2}\int _{-\infty }^{e_\alpha }(e_\alpha -y)^{2}\phi (y)dy\\&=\alpha ^{2}\left[ {\overline{\varPhi }}(e_\alpha )+e_\alpha \phi (e_\alpha )-2e_\alpha \phi (e_\alpha )+e_\alpha ^{2}(1-\varPhi (e_\alpha ))\right] \\&\quad +(1-\alpha )^{2}\left[ \varPhi (e_\alpha )-e_\alpha \phi (e_\alpha )+2e_\alpha \phi (e_\alpha )+e_\alpha ^{2}\varPhi (e_\alpha )\right] \\&=(1+e_\alpha ^{2})\left[ \alpha ^{2}+\varPhi (e_\alpha )(1-2\alpha )\right] +e_\alpha \phi (e_\alpha )\left[ 1-2\alpha \right] . \end{aligned}$$

Let now \(Y\sim U(0,1)\), \(\phi (y)=1_{[0,1]}\), \(\varPhi (y)=y1_{[0,1]}\) and \(z_{\alpha }=\alpha \).

Piecewise linear score, uniform case.

$$\begin{aligned} E[S^{(v)}(z_{\alpha },Y)]&=\alpha \int _{\alpha }^{1}(y-\alpha )\phi (y)dy+(1-\alpha )\int _{0}^{1}(\alpha -y)\phi (y)dy \\&=\frac{\alpha (1-\alpha )}{2}. \\ E[S^{(v)}(z_{\alpha },Y)^{2}]&=\alpha ^{2}\int _{\alpha }^{1}(y-\alpha )^{2}dy+(1-\alpha )^{2}\int _{0}^{\alpha }(\alpha -y)^{2}dy \\ { Var}[S^{(v)}(z_{\alpha },Y)]&=E[S^{(v)}(z_{\alpha },Y]^{2})-[E[S^{(v)}(z_{\alpha },Y)]]^{2} \\&=\frac{1}{12}\alpha ^{2}\left( \alpha -1\right) ^{2} \end{aligned}$$

Piecewise quadratic score, uniform case. Recall that if \(Y\sim U(0,1)\)

$$\begin{aligned} e_{\alpha }=\frac{\alpha -\sqrt{\alpha -\alpha ^{2}}}{2\alpha -1}\text {.} \end{aligned}$$
(9)
$$\begin{aligned} E\left[ S^{(e)}(e_{\alpha },Y)\right]= & {} \int _{0}^{1}\left[ \alpha (y-e_{\alpha })_{+}^{2}+(1-\alpha )(y-e_{\alpha })_{-}^{2}\right] dy \\= & {} \alpha \int _{e_{\alpha }}^{1}(y-e_{\alpha })^{2}dy+(1-\alpha )\int _{0}^{e_{\alpha }}(e_{\alpha }-y)^{2}dy \\= & {} \frac{1}{3}e_{\alpha }^{3}\left( 1-\alpha \right) +\alpha \left( e_{\alpha }^{2}-e_{\alpha }-\frac{1}{3}e_{\alpha }^{3}+\frac{1}{3}\right) \end{aligned}$$

Substituting (9) we get

$$\begin{aligned} E\left[ S^{(e)}(e_{\alpha },Y)\right]= & {} \frac{1}{3}\alpha (1-\alpha )\frac{1-2\sqrt{\alpha (1-\alpha )}}{\left( 2\alpha -1\right) ^{2}}.\\ E[S^{(e)}(e_{\alpha },Y)^2]= & {} \int _{0}^{1}\left[ \alpha (y-e_{\alpha })_{+}^{2}+(1-\alpha )(y-e_{\alpha })_{-}^{2}\right] ^{2}dy \\= & {} \alpha ^{2}\int _{e_{\alpha }}^{1}(y-e_{\alpha })^{4}dy+(1-\alpha )^{2}\int _{0}^{e_{\alpha }}(e_{\alpha }-y)^{4}dy \\= & {} \frac{1}{5}e_{\alpha }^{5}\left( 1-\alpha \right) ^{2}+\alpha ^{2}\left( 2e_{\alpha }^{2}-e_{\alpha }-2e_{\alpha }^{3}+e_{\alpha }^{4}-\frac{1}{5} e_{\alpha }^{5}+\frac{1}{5}\right) \\ E[S^{(e)}(e_{\alpha },Y)^2]= & {} -\frac{11\alpha ^{4}-2\alpha ^{3}-\alpha ^{2}-12\alpha ^{5}+4\alpha ^{6}-\left( \alpha -\alpha ^{2}\right) ^{\frac{5}{2}}}{5\left( 2\alpha -1\right) ^{4}}+ \\&-\frac{5\alpha ^{2}\sqrt{\alpha -\alpha ^{2}}-10\alpha ^{3}\sqrt{\alpha -\alpha ^{2}}+5\alpha ^{4}\sqrt{\alpha -\alpha ^{2}}}{5\left( 2\alpha -1\right) ^{4}} \\= & {} -\frac{1}{5}\alpha ^{2}\left( -4\alpha +4\alpha ^{2}-1\right) \frac{\left( \alpha -1\right) ^{2}}{\left( 2\alpha -1\right) ^{4}}-\frac{4}{5}\frac{ \left( \alpha -\alpha ^{2}\right) ^{\frac{5}{2}}}{\left( 2\alpha -1\right) ^{4}} \\= & {} \frac{\alpha ^{2}\left( \alpha -1\right) ^{2}}{5\left( 2\alpha -1\right) ^{4} }\left( 4\alpha -4\alpha ^{2}+1-4\sqrt{\alpha -\alpha ^{2}}\right) \\= & {} \frac{ \alpha ^{2}\left( 1-\alpha \right) ^{2}}{5\left( 2\alpha -1\right) ^{4}} \left( 1-2\sqrt{\alpha (1-\alpha )}\right) ^{2}.\\ { Var}[S^{e}(e_{\alpha },Y)]= & {} \frac{\alpha ^{2}\left( 1-\alpha \right) ^{2}}{ 5\left( 2\alpha -1\right) ^{4}}\left( 1-2\sqrt{\alpha (1-\alpha )}\right) ^{2}+\\&- \left( \frac{1}{3}\alpha (1-\alpha )\frac{1-2\sqrt{\alpha (1-\alpha )}}{ \left( 2\alpha -1\right) ^{2}}\right) ^{2} \\= & {} \frac{4}{45}\frac{\alpha ^{2}\left( 1-\alpha \right) ^{2}}{\left( 2\alpha -1\right) ^{4}}\left( 1-2\sqrt{\alpha (1-\alpha )}\right) ^{2} \end{aligned}$$

Note the relationship

$$\begin{aligned} { SD}[S^{e}(e_{\alpha },Y)]=\frac{2}{3\sqrt{5}}\frac{\alpha \left( 1-\alpha \right) }{\left( 2\alpha -1\right) ^{2}}\left( 1-2\sqrt{\alpha (1-\alpha )} \right) =\frac{2}{\sqrt{5}}E[S^{e}(e_{\alpha },Y)]. \end{aligned}$$

Identification function, uniform case.

$$\begin{aligned} { Var}[I^{e}(Y, e_\alpha )]&=\alpha ^{2}\int _{e_\alpha }^{1}(y-e_\alpha )^{2}dy+(1-\alpha )^{2}\int _{0}^{e_\alpha }(y-e_\alpha )^{2}dy\\&=\frac{\alpha ^{2}}{3}\left( 3e_\alpha ^{2}-3e_\alpha -e_\alpha ^{3}+1\right) +(1-\alpha )^{2} \frac{1}{3}e_\alpha ^{3} \\&=\frac{\alpha ^{2}}{3}\left( 1-e_\alpha \right) ^{3}+\frac{1}{3}(1-\alpha )^{2} e_\alpha ^{3}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellini, F., Negri, I. & Pyatkova, M. Backtesting VaR and expectiles with realized scores. Stat Methods Appl 28, 119–142 (2019). https://doi.org/10.1007/s10260-018-00434-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-018-00434-w

Keywords

Navigation