Skip to main content
Log in

A class of new special solution of nonlinear diffusion equation

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

One of the most interesting problems of nonlinear differential equations is the construction of partial solutions. A new method is presented in this paper to seek special solutions of nonlinear diffusion equations. This method is based on seeking suitable function to satisfy Bernolli equation. Many new special solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarcson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1991

    Book  Google Scholar 

  2. Claskon, P.A., Manifield. E.L. Symmetry reductiona and exact solutions of a class of nonlinear heat equations. Physica D, 70: 250–288 (1994)

    Article  MathSciNet  Google Scholar 

  3. Dorodnitsyn, V.A., Knyazeva, I.V., Svirshchevskii, S.R. The group properties of heat equation with source in two and three-deminsional case. Differential equations, 19: 1215–1223 (1983)

    MathSciNet  Google Scholar 

  4. Elwakil, S.A., Elabany, S.K., Zahran, M.A., Sabry, R. Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A, 299: 179–188 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, Z., Liu, S., Liu, S. New solutions to mKdV equation. Phys. Lett. A, 326: 364–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, Z., Zhang, L., Liu, S., liu, S. Fractional transformation and new solutions to mKdV equation. Phys. Lett. A, 325: 363–369 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fushchych, W.I., Serov, N.I., Tulupova, L.A. The conditional invariance and exact solutions of the nonlinear diffsion equation. Proc. Acad. Sci. Ukraine, 4: 37–40 (1993)

    MATH  Google Scholar 

  8. Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearties. Proc. Roy. Soc. Edinburgh, 125A: 225–246 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.R. Method for Solving the Korteweg-deVries Equation. Phys. Rev. Lett., 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  10. Hirota, R. Exact Solution of the Korteweg de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett., 27: 1192–1194 (1971)

    Article  MATH  Google Scholar 

  11. Kaptsov, O.V., Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A: Math. Gen., 36: 1401–1414 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaptsov, O.V., Schmidt, A.V. Linear determining equations for differential constraints. Glasgow Math., 47A: 109–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kochina, N.N. A solution of the diffusion equation with nonliear right-hand side. Journal of Applied Mechanics and Techenical Physics, 10: 80–85 (1969)

    Google Scholar 

  14. Kudryashov, N.A. On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. A, 155: 269–275 (1991)

    Article  MathSciNet  Google Scholar 

  15. Kudryashov, N.A. Analytical theory of nonlinear differentila equations. Institute of Computer Investigations, Moscow-Izhevek, 2004

    Google Scholar 

  16. Liu, G.T., Fan, T.Y. New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A, 345: 161–166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oliver, P. Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986

    Book  Google Scholar 

  18. Ovsiannikov, L.V. Group Analysis of Differential Equations. Academic Press, New York, 1982

    MATH  Google Scholar 

  19. Parkers, E.J., Duffy, B.R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Computer Physics Communications, 98: 288 (1996)

    Article  Google Scholar 

  20. Qin, M.C., Fan, G.H. An effective method for finding special solutions of nonlinear differential equations with variable coefficients. Phys. Lett. A, 372: 3240–3242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, C.T. A simple transformation for nonlinear waves. Phys. Lett. A, 224: 77–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yan, Z.Y. An improved algebra method and its applications in nonlinear wave equations. Choas Solitons and Fractals, 21(4): 1013–1021 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Tang.

Additional information

Supported by the Natural Science Foundation Project of Chongqing (CSTC, 2014jcyjA00026) and Science and Technology Research Project of Chongqing Municipal Education Commission (KJ1400614).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y. A class of new special solution of nonlinear diffusion equation. Acta Math. Appl. Sin. Engl. Ser. 32, 437–446 (2016). https://doi.org/10.1007/s10255-016-0569-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0569-6

Keywords

2000 MR Subject Classification

Navigation