Skip to main content

Advertisement

Log in

Whole blood hydroxychloroquine: Does genetic polymorphism of cytochrome P450 enzymes have a role?

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide range of clinical manifestations and multifactorial etiologies ranging from environmental to genetic. SLE is associated with dysregulated immunological reactions, with increased immune complex formation leading to end-organ damages such as lupus nephritis, cutaneous lupus, and musculoskeletal disorders. Lupus treatment aims to reduce disease activity, prevent organ damage, and improve long-term patient survival and quality of life. Antimalarial, hydroxychloroquine (HCQ) is used as a first-line systemic treatment for lupus. It has shown profound efficacy in lupus and its associated conditions. However, wide variation in terms of clinical response to this drug has been observed among this group of patients. This variability has limited the potential of HCQ to achieve absolute clinical benefits. Several factors, including genetic polymorphisms of cytochrome P450 enzymes, have been stipulated as key entities leading to this inter-individual variation. Thus, there is a need for more studies to understand the role of genetic polymorphisms in CYP450 enzymes in the clinical response to HCQ. Focusing on the role of genetic polymorphism on whole blood HCQ in lupus disorder, this review aims to highlight up-to-date pathophysiology of SLE, the mechanism of action of HCQ, and finally the role of genetic polymorphism of CYP450 enzymes on whole blood HCQ level as well as clinical response in lupus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Fatoye F, Gebrye T, Mbada C. Global and regional prevalence and incidence of systemic lupus erythematosus in low-and-middle income countries: a systematic review and meta-analysis. Rheumatol Int. 2022;42:2097–107. https://doi.org/10.1007/s00296-022-05183-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2022;82:351–6. https://doi.org/10.1136/ard-2022-223035.

    Article  PubMed  Google Scholar 

  3. Gui Y, Bai W, Xu J, et al. Sex differences in systemic lupus erythematosus (SLE): an inception cohort of the Chinese SLE Treatment and Research Group (CSTAR) registry XVII. Chin Med J (Engl). 2022;135:2191–9. https://doi.org/10.1097/CM9.0000000000002360Yinli.

    Article  CAS  PubMed  Google Scholar 

  4. Raymond WD, Hamdorf M, Furfaro M, Eilertsen GO, Nossent JC. Smoking associates with increased BAFF and decreased interferon- γ levels in patients with systemic lupus erythematosus. Lupus Sci Med. 2021;1(8):e000537. https://doi.org/10.1136/lupus-2021-000537.

    Article  Google Scholar 

  5. Oke V, Gunnarsson I, Dorschner J, et al. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res Ther. 2019;21:1–11. https://doi.org/10.1186/s13075-019-1878-y.

    Article  Google Scholar 

  6. Brohawn PZ, Streicher K, Higgs BW, et al. Type I interferon gene signature test–low and –high patients with systemic lupus erythematosus have distinct gene expression signatures. Lupus. 2019;28:1524–33. https://doi.org/10.1177/0961203319885447.

    Article  CAS  PubMed  Google Scholar 

  7. Masui Y, Yanai H, Hiraga K, Tsuda N, Kano T. Effects of anti-malarial drug, hydroxychloroquine, on glucose and lipid metabolism in Japanese population. J Endocrinol Metab. 2019;9:159–64. https://doi.org/10.14740/jem611.

    Article  CAS  Google Scholar 

  8. Rempenault C, Combe B, Barnetche T, et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2018;77:98–103. https://doi.org/10.1136/annrheumdis-2017-211836.

    Article  CAS  PubMed  Google Scholar 

  9. Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186:4794–804. https://doi.org/10.4049/jimmunol.1000702.

    Article  CAS  PubMed  Google Scholar 

  10. Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med. 2020;12:e12476. https://doi.org/10.15252/emmm.202012476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Li X, Luo X, et al. The mechanisms of hydroxychloroquine in rheumatoid arthritis treatment: inhibition of dendritic cell functions via Toll like receptor 9 signaling. Biomed Pharmacother. 2020;132:110848. https://doi.org/10.1016/j.biopha.2020.110848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alves da Silva AE, de Abreu PMB, Geraldes DC, de Oliveira Nascimento L. Hydroxychloroquine: pharmacological, physicochemical aspects and activity enhancement through experimental formulations. J Drug Deliv Sci Technol. 2021;63:102512. https://doi.org/10.1016/j.jddst.2021.102512.

    Article  CAS  Google Scholar 

  13. Manzo C. Antimalarials—are they effective and safe in rheumatic disease? focus on the neuropsychiatric side effects. Reumatologia. 2018;56:333–4. https://doi.org/10.5114/reum.2018.76904.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Balevic SJ, Randell R, Weiner D, et al. Pharmacokinetics of hydroxychloroquine in paediatric lupus: data from a novel, direct-to-family clinical trial. Lupus Sci Med. 2022;9:e000811. https://doi.org/10.1136/lupus-2022-000811.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ototake Y, Yamaguchi Y, Kanaoka M, Akita A, Ikeda N, Aihara M. Varied responses to and efficacies of hydroxychloroquine treatment according to cutaneous lupus erythematosus subtypes in Japanese patients. J Dermatol. 2019;46:285–9. https://doi.org/10.1111/1346-8138.14802.

    Article  CAS  PubMed  Google Scholar 

  16. Jallouli M, Galicier L, Zahr N, et al. Determinants of hydroxychloroquine blood concentration variations in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67:2176–84. https://doi.org/10.1002/art.39194.

    Article  CAS  PubMed  Google Scholar 

  17. Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology. 2015;23:231–69. https://doi.org/10.1007/s10787-015-0239-y.

    Article  CAS  PubMed  Google Scholar 

  18. Projean D, Baune B, Farinotti R, et al. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003;31:748–54. https://doi.org/10.1124/dmd.31.6.748.

    Article  CAS  PubMed  Google Scholar 

  19. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  20. Kim KA, Park JY, Lee JS, Lim S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003;26:631–7. https://doi.org/10.1007/BF02976712.

    Article  CAS  PubMed  Google Scholar 

  21. Munster T, Gibbs JP, Shen D, et al. Hydroxychloroquine concentration–response relationships in patients with rheumatoid arthritis. Arthritis Rheumatol. 2002;46:1460–9. https://doi.org/10.1002/art.10307.

    Article  CAS  Google Scholar 

  22. Montastruc JL, Rousseau V, Durrieu G, Bagheri H. Serious adverse drug reactions with hydroxychloroquine: a pharmacovigilance study in Vigibase®. Eur J Clin Pharmacol. 2020;76:1479–80. https://doi.org/10.1007/s00228-020-02920-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kao JH, Lai TT, Lu CH, et al. Characteristics and potential risk factors of hydroxychloroquine retinopathy in patients with systemic lupus erythematosus: focusing on Asian population. J Ocul Pharmacol Ther. 2022;38:728–33. https://doi.org/10.1089/jop.2022.0060.

    Article  CAS  PubMed  Google Scholar 

  24. Marshall E, Robertson M, Kam S, Penwarden A, Riga P, Davies N. Prevalence of hydroxychloroquine retinopathy using 2018 royal college of ophthalmologists diagnostic criteria. Eye. 2021;35:343–8. https://doi.org/10.1038/s41433-020-1102-y.

    Article  CAS  PubMed  Google Scholar 

  25. Martín-Iglesias D, Artaraz J, Fonollosa A, Ugarte A, Arteagabeitia A, Ruiz-Irastorza G. Evolution of retinal changes measured by optical coherence tomography in the assessment of hydroxychloroquine ocular safety in patients with systemic lupus erythematosus. Lupus. 2019;28:555–9. https://doi.org/10.1177/0961203319829826.

    Article  CAS  PubMed  Google Scholar 

  26. Costedoat-Chalumeau N, Amoura Z, Duhaut P, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum. 2003;48:3207–11. https://doi.org/10.1002/art.11304.

    Article  CAS  PubMed  Google Scholar 

  27. Peng W, Liu R, Zhang L, Fu Q, Mei D, Du X. Breast milk concentration of hydroxychloroquine in Chinese lactating women with connective tissue diseases. Eur J Clin Pharmacol. 2019;75:1547–53. https://doi.org/10.1007/s00228-019-02723-z.

    Article  CAS  PubMed  Google Scholar 

  28. Ángel M, Dafhne S, Sánchez A, et al. Use of antimalarial drugs is associated with a lower risk of preeclampsia in lupus pregnancy: a prospective cohort study. Int J Rheum Dis. 2020;23:633–40. https://doi.org/10.1111/1756-185X.13830.

    Article  CAS  Google Scholar 

  29. Koh JH, Ko HS, Kwok SK, Ju JH, Park SH. Hydroxychloroquine and pregnancy on lupus flares in Korean patients with systemic lupus erythematosus. Lupus. 2015;24:210–7. https://doi.org/10.1177/0961203314555352.

    Article  CAS  PubMed  Google Scholar 

  30. Uzrail AH, Assaf AM, Abdalla SS. Correlations of expression levels of a panel of genes (IRF5, STAT4, TNFSF4, MECP2, and TLR7) and Cytokine Levels (IL-2, IL-6, IL-10, IL-12, IFN- γ, and TNF- α) with systemic lupus erythematosus outcomes in Jordanian patients. Biomed Res Int. 2019. https://doi.org/10.1155/2019/1703842.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Arneth B. Systemic lupus erythematosus and DNA degradation and elimination defects. Front Immunol. 2019;10:1697. https://doi.org/10.3389/fimmu.2019.01697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crotzer VL, Blum JS. Autophagy and Its role in MHC-mediated antigen presentation. J Immunol. 2009;182:3335–41. https://doi.org/10.4049/jimmunol.0803458.

    Article  CAS  PubMed  Google Scholar 

  33. Alfadhli S, Ghanem AAM, Nizam R. Genome-wide differential expression reveals candidate genes involved in the pathogenesis of lupus and lupus nephritis. Int J Rheum Dis. 2016;19:55–64. https://doi.org/10.1111/1756-185X.12745.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta V, Kumar S, Pratap A, et al. Association of ITGAM, TNFSF4, TNFAIP3 and STAT4 gene polymorphisms with risk of systemic lupus erythematosus in a North Indian population. Lupus. 2018;27:1973–9. https://doi.org/10.1177/0961203318786432.

    Article  CAS  PubMed  Google Scholar 

  35. Grieves JL, Fye JM, Harvey S, Grayson JM, Hollis T, Perrino FW. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci. 2015;112:5117–22. https://doi.org/10.1073/pnas.1423804112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue K, Niu WQ, Cui Y. Association of HLA-DR3 and HLA-DR15 polymorphisms with risk of systemic lupus erythematosus. Chin Med J (Engl). 2018;131:2844–51. https://doi.org/10.4103/0366-6999.246058.

    Article  CAS  PubMed  Google Scholar 

  37. Webber D, Cao J, Dominguez D, et al. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology. 2020;59:90–8. https://doi.org/10.1093/rheumatology/kez220.

    Article  PubMed  Google Scholar 

  38. Skopelja-Gardner S, An J, Tai J, et al. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep. 2020;10:1–14. https://doi.org/10.1038/s41598-020-64865-w.

    Article  CAS  Google Scholar 

  39. Connelly KL, Kandane-Rathnayake R, Huq M, Hoi A, Nikpour M, Morand EF. Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus OPEN. Sci REpoRts. 2018;8:3268. https://doi.org/10.1038/s41598-018-20203-9.

    Article  CAS  Google Scholar 

  40. Furie R, Werth VP, Merola JF, et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Investig. 2019;129:1359–71. https://doi.org/10.1172/JCI124466.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jayne D, Rovin B, Mysler EF, et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann Rheum Dis. 2022;81:496–506. https://doi.org/10.1136/annrheumdis-2021-221478.

    Article  CAS  PubMed  Google Scholar 

  42. Arnold J, Dass S, Twigg S, et al. Concise report efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology. 2022;61:4905–9. https://doi.org/10.1093/rheumatology/keac150.

    Article  CAS  PubMed  Google Scholar 

  43. Takeuchi T, Tanaka Y, Matsumura R, et al. Safety and tolerability of sifalimumab, an anti-interferon-α monoclonal antibody, in Japanese patients with systemic lupus erythematosus: a multicenter, phase 2, open-label study. Mod Rheumatol. 2020;30:93–100. https://doi.org/10.1080/14397595.2019.1583832.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Gregorio JD, Iwahori T, et al. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc Natl Acad Sci U S A. 2017;114:1988–93. https://doi.org/10.1073/pnas.1610630114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacob CO, Yu N, Sindhava V, et al. Differential development of systemic lupus erythematosus in NZM 2328 mice deficient in discrete pairs of BAFF receptors. Arthritis Rheumatol. 2015;67:2523–35. https://doi.org/10.1002/art.39210.

    Article  CAS  PubMed  Google Scholar 

  46. Jeremic I, Djuric O, Nikolic M, et al. Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosus. Rheumatol Int. 2019;39:1849–57. https://doi.org/10.1007/s00296-019-04426-1.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace DJ, Ginzler EM, Merrill JT, et al. Safety and efficacy of belimumab plus standard therapy for up to thirteen years in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2019;71:1125–34. https://doi.org/10.1002/art.40861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wise LM, Stohl W. Belimumab and rituximab in systemic lupus erythematosus: a tale of two B cell-targeting agents. Front Med. 2020;7:1–10. https://doi.org/10.3389/fmed.2020.00303.

    Article  Google Scholar 

  49. Ripoll È, De RL, Bordignon JD, et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res Ther. 2016;18:1–12. https://doi.org/10.1186/s13075-016-1034-x.

    Article  CAS  Google Scholar 

  50. Zhang H, Watanabe R, Berry GJ, Tian L, Goronzy J, Weyand CM. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation. 2018;137:1934–48. https://doi.org/10.1161/CIRCULATIONAHA.117.030423.

    Article  CAS  PubMed  Google Scholar 

  51. Hasni SA, Gupta S, Davis M, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. https://doi.org/10.1038/s41467-021-23361-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petri M, Bruce IN, Dörner T, et al. Articles baricitinib for systemic lupus erythematosus: a double- blind, randomised, placebo-controlled, phase 3 trial. Lancet. 2023;6736(Il):1–9. https://doi.org/10.1016/S0140-6736(22)02546-6.

    Article  Google Scholar 

  53. Gonzalez-Quintial R, Nguyen A, Kono DH, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a mavs-activating RNA virus requires endosomal tlr signaling and host genetic predisposition. PLoS ONE. 2018;13:1–21. https://doi.org/10.1371/journal.pone.0203118.

    Article  CAS  Google Scholar 

  54. Yang B, Huang X, Xu S, et al. Decreased miR-4512 levels in monocytes and macrophages of individuals with systemic lupus erythematosus contribute to innate immune activation and neutrsophil NETosis by targeting TLR4 and CXCL2. Front Immunol. 2021;12:756825. https://doi.org/10.3389/fimmu.2021.756825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Van Vollenhoven RF, Hahn BH, Tsokos GC, et al. Efficacy and safety of ustekinumab in patients with active systemic lupus erythematosus: results of a phase II open-label extension study. J Rheumatol. 2022;49:380–7. https://doi.org/10.3899/jrheum.210805.

    Article  CAS  PubMed  Google Scholar 

  56. Haas NB, Appleman LJ, Stein M, et al. Autophagy inhibition to augment mTOR inhibition: a phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin Cancer Res. 2019;25:2080–7. https://doi.org/10.1158/1078-0432.CCR-18-2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lafyatis R, York M, Marshak-Rothstein A. Antimalarial agents: closing the gate on toll-like receptors? Arthritis Rheum. 2006;54:3068–70. https://doi.org/10.1002/art.22157.

    Article  CAS  PubMed  Google Scholar 

  58. Torigoe M, Sakata K, Ishii A, Iwata S, Nakayamada S, Tanaka Y. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol. 2018;195:1–7. https://doi.org/10.1016/j.clim.2018.07.003.

    Article  CAS  PubMed  Google Scholar 

  59. Willis R, Seif AM, McGwin G, et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients: data from LUMINA (LXXV), a multiethnic US cohort. Lupus. 2012;21:830–5. https://doi.org/10.1177/096120331243727.

    Article  CAS  PubMed  Google Scholar 

  60. Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther. 2012;14:1. https://doi.org/10.1186/ar3895.

    Article  CAS  Google Scholar 

  61. Shimomatsu T, Kanazawa N, Mikita N, et al. The effect of hydroxychloroquine on lupus erythematosus-like skin lesions in MRL/lpr mice. Mod Rheumatol. 2016;26:744–8. https://doi.org/10.3109/14397595.2016.1140711.

    Article  CAS  PubMed  Google Scholar 

  62. Wu SF, Bin CC, Hsu JM, et al. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling. Arthritis Res Ther. 2017;19:1–14. https://doi.org/10.1186/s13075-017-1393-y.

    Article  CAS  Google Scholar 

  63. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase–DNA interaction. J Immunol. 2015;194:4089–93. https://doi.org/10.4049/jimmunol.1402793.

    Article  CAS  PubMed  Google Scholar 

  64. Mai S, Zou L, Tian X, et al. Double-edged effect of hydroxychloroquine on human umbilical cord-derived mesenchymal stem cells treating lupus nephritis in MRL/lpr mice. Mol Pharm. 2018;15:1800–13. https://doi.org/10.1021/acs.molpharmaceut.7b01146.

    Article  CAS  PubMed  Google Scholar 

  65. Liang N, Zhong Y, Zhou J, et al. Immunosuppressive effects of hydroxychloroquine and artemisinin combination therapy via the nuclear factor-κB signaling pathway in lupus nephritis mice. Exp Ther Med. 2018;15:2436–42. https://doi.org/10.3892/etm.2018.5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chasset F, Bouaziz JD, Costedoat-Chalumeau N, Francès C, Arnaud L. Efficacy and comparison of antimalarials in cutaneous lupus erythematosus subtypes: a systematic review and meta-analysis. Br J Dermatol. 2017;177:188–96. https://doi.org/10.1111/bjd.15312.

    Article  CAS  PubMed  Google Scholar 

  67. Al-Rawi H, Meggitt SJ, Williams FM, Wahie S. Steady-state pharmacokinetics of hydroxychloroquine in patients with cutaneous lupus erythematosus. Lupus. 2018;27:847–52. https://doi.org/10.1177/0961203317727601.

    Article  CAS  PubMed  Google Scholar 

  68. Peh D, Wan Ahmad Kammal WSL, Beh PJ, et al. Correlation of whole blood hydroxychloroquine concentration with cutaneous lupus erythematosus and factors associated with it: first multicenter, cross-sectional analysis in Malaysia. J Dermatol. 2022;49:545–9. https://doi.org/10.1111/1346-8138.16292.

    Article  CAS  PubMed  Google Scholar 

  69. Yeon Lee J, Lee J, Ki Kwok S, Hyeon JuJ, Su Park K, Park SH. Factors related to blood hydroxychloroquine concentration in patients with systemic lupus erythematosus. Arthritis Care Res. 2017;69:536–42. https://doi.org/10.1002/acr.22962.

    Article  CAS  Google Scholar 

  70. Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 Update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019;78:736–45. https://doi.org/10.1136/annrheumdis-2019-215089.

    Article  CAS  PubMed  Google Scholar 

  71. Morita S, Takahashi T, Yoshida Y, Yokota N. Population pharmacokinetics of hydroxychloroquine in Japanese patients with cutaneous or systemic lupus erythematosus. Ther Drug Monit. 2016;38:259–67. https://doi.org/10.1097/FTD.0000000000000261.

    Article  CAS  PubMed  Google Scholar 

  72. Durcan L, Clarke WA, Magder LS, Petri M. Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. J Rheumatol. 2015;42:2092–7. https://doi.org/10.3899/jrheum.150379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aouhab Z, Hong H, Felicelli C, Tarplin S, Ostrowski RA. Outcomes of systemic lupus erythematosus in patients who discontinue hydroxychloroquine. ACR Open Rheumatol. 2019;1:593–9. https://doi.org/10.1002/acr2.11084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fernandez-Ruiz R, Bornkamp N, Kim MY, et al. Discontinuation of hydroxychloroquine in older patients with systemic lupus erythematosus: a multicenter retrospective study. Arthritis Res Ther. 2020;22:1–9. https://doi.org/10.1186/s13075-020-02282-0.

    Article  CAS  Google Scholar 

  75. Garg S, Unnithan R, Hansen KE, Costedoat-Chalumeau N, Bartels CM. Clinical significance of monitoring hydroxychloroquine levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Arthritis Care Res. 2021;73:707–16. https://doi.org/10.1002/acr.24155.

    Article  CAS  Google Scholar 

  76. Francès C, Cosnes A, Duhaut P, et al. Low blood concentration of hydroxychloroquine in patients with refractory cutaneous lupus erythematosus: a French multicenter prospective study. Arch Dermatol. 2012;148:479–84. https://doi.org/10.1001/archdermatol.2011.2558.

    Article  PubMed  Google Scholar 

  77. Mok CC, Penn HJ, Chan KL, Tse SM, Langman LJ, Jannetto PJ. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Arthritis Care Res. 2016;68:1295–302. https://doi.org/10.1002/acr.22837.

    Article  CAS  Google Scholar 

  78. Cunha C, Alexander S, Ashby D, et al. Hydroxycloroquine blood concentration in lupus nephritis: a determinant of disease outcome? Nephrol Dial Transpl. 2018;33:1604–10. https://doi.org/10.1093/ndt/gfx318.

    Article  CAS  Google Scholar 

  79. Geraldino-Pardilla L, Perel-Winkler A, Miceli J, et al. Association between hydroxychloroquine levels and disease activity in a predominantly Hispanic systemic lupus erythematosus cohort. Lupus. 2019;28:862–7. https://doi.org/10.1177/0961203319851558.

    Article  CAS  PubMed  Google Scholar 

  80. Chasset F, Arnaud L, Costedoat-Chalumeau N, Zahr N, Bessis D, Francès C. The effect of increasing the dose of hydroxychloroquine (HCQ) in patients with refractory cutaneous lupus erythematosus (CLE): an open-label prospective pilot study. J Am Acad Dermatol. 2016;74:693–9. https://doi.org/10.1016/j.jaad.2015.09.064.

    Article  CAS  PubMed  Google Scholar 

  81. Zahr N, Urien S, Funck-brentano C, et al. Evaluation of hydroxychloroquine blood concentrations and effects in childhood-onset systemic lupus erythematosus. Pharmaceuticals. 2021;14:1–11. https://doi.org/10.3390/ph14030273.

    Article  CAS  Google Scholar 

  82. Carmichael SJ, Day RO, Tett SE. A cross-sectional study of hydroxychloroquine concentrations and effects in people with systemic lupus erythematosus. Intern Med J. 2013;43:547–53. https://doi.org/10.1111/imj.12100.

    Article  CAS  PubMed  Google Scholar 

  83. Balevic SJ, Cohen-Wolkowiez M, Eudy AM, Green TP, Schanberg LE, Clowse MEB. Hydroxychloroquine levels throughout pregnancies complicated by rheumatic disease: implications for maternal and neonatal outcomes. J Rheumatol. 2019;46:57–63. https://doi.org/10.3899/jrheum.180158.

    Article  CAS  PubMed  Google Scholar 

  84. Lenfant T, Salah S, Leroux G, et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus: a case-control study with hydroxychloroquine blood-level analysis. Rheumatol (U K). 2020;59:3807–16. https://doi.org/10.1093/rheumatology/keaa157.

    Article  CAS  Google Scholar 

  85. Petri M, Konig MF, Li J, Goldman DW. Association of higher hydroxychloroquine blood levels with reduced thrombosis risk in systemic lupus erythematosus. Arthritis Rheumatol. 2021;73:997–1004. https://doi.org/10.1002/art.41621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zanetti CB, Pedrosa T, Kupa LDVK, et al. Hydroxychloroquine blood levels in stable lupus nephritis under low dose (2–3 mg/kg/day): 12-month prospective randomized controlled trial. Clin Rheumatol. 2021;40:2745–51. https://doi.org/10.1007/s10067-021-05600-2.

    Article  PubMed  Google Scholar 

  87. Vinci D, Kupa K, Aikawa E, et al. The influence of obesity on hydroxychloroquine blood levels in lupus nephritis patients. Lupus. 2021;30:554–9. https://doi.org/10.1177/0961203320985214.

    Article  CAS  Google Scholar 

  88. Balevic SJ, Green TP, Clowse MEB, Eudy AM, Schanberg LE, Cohen-Wolkowiez M. Pharmacokinetics of hydroxychloroquine in pregnancies with rheumatic diseases. Clin Pharmacokinet. 2019;58:525–33. https://doi.org/10.1007/s40262-018-0712-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Balevic SJ, Weiner D, Clowse MEB, et al. Hydroxychloroquine PK and exposure-response in pregnancies with lupus: the importance of adherence for neonatal outcomes. Lupus Sci Med. 2022;9:1–9. https://doi.org/10.1136/lupus-2021-000602.

    Article  Google Scholar 

  90. Eh LKT, Ertilsson LB. Review pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet. 2012;27:55–67. https://doi.org/10.2133/dmpk.DMPK-11-RV-121.

    Article  CAS  Google Scholar 

  91. Smith DM, Weitzel KW, Elsey AR, et al. CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: a pragmatic clinical trial. Genet Med. 2019;21:1842–50. https://doi.org/10.1038/s41436-018-0431-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tracy TS, Chaudhry AS, Prasad B, et al. Interindividual variability in cytochrome P450-mediated drug metabolism. Drug Metab Dispos. 2016;44:343–51. https://doi.org/10.1124/dmd.115.067900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol. 2014;10:1569–83. https://doi.org/10.1517/17425255.2014.964204.

    Article  CAS  PubMed  Google Scholar 

  94. De WPW, Sunden KF, Furge LL. Molecular dynamics of CYP2D6 polymorphisms in the absence and presence of a mechanism-based inactivator reveals changes in local flexibility and dominant substrate access channels. PLoS One. 2014;9:e108607. https://doi.org/10.1371/journal.pone.0108607.

    Article  CAS  Google Scholar 

  95. Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95:376–82. https://doi.org/10.1038/clpt.2013.254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dorji PW, Tshering G, Na-Bangchang K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: a systematic review. J Clin Pharm Ther. 2019;44:508–24. https://doi.org/10.1111/jcpt.12835.

    Article  CAS  PubMed  Google Scholar 

  97. Lee JY, Vinayagamoorthy N, Han K, et al. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2016;68:184–90. https://doi.org/10.1002/art.39402.

    Article  CAS  PubMed  Google Scholar 

  98. Gao B, Tan T, Cao X, et al. Relationship of cytochrome P450 gene polymorphisms with blood concentrations of hydroxychloroquine and its metabolites and adverse drug reactions. BMC Med Genomics. 2022;15:1–10. https://doi.org/10.1186/s12920-022-01171-6.

    Article  CAS  Google Scholar 

  99. Wahie S, Daly AK, Cordell HJ, et al. Clinical and pharmacogenetic influences on response to hydroxychloroquine in discoid lupus erythematosus: a retrospective cohort study. J Investig Dermatol. 2011;131:1981–6. https://doi.org/10.1038/jid.2011.167.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Fundamental Research Grant Scheme by the Ministry of Higher Education, Malaysia (FRGS/1/2020/SKK01/UPM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

KNH and NJ decided on the topic, NJ did the literature search, and JS, ACHY, WCH, WSLWAK, and EWC contributed to reviewing and finalizing the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kang Nien How.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatta, N., Stanslas, J., Yong, A.C.H. et al. Whole blood hydroxychloroquine: Does genetic polymorphism of cytochrome P450 enzymes have a role?. Clin Exp Med 23, 4141–4152 (2023). https://doi.org/10.1007/s10238-023-01142-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01142-w

Keywords

Navigation