Skip to main content

Advertisement

Log in

Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cellular senescence is a stable cell cycle arrest, usually in response to internal and/or external stress, including telomere dysfunction, abnormal cellular growth, and DNA damage. Several chemotherapeutic drugs, such as melphalan (MEL) and doxorubicin (DXR), induce cellular senescence in cancer cells. However, it is not clear whether these drugs induce senescence in immune cells. We evaluated the induction of cellular senescence in T cells were derived from human peripheral blood mononuclear cells (PBMNCs) in healthy donors using sub-lethal doses of chemotherapeutic agents. The PBMNCs were kept overnight in RPMI 1640 medium with 2% phytohemagglutinin and 10% fetal bovine serum and then cultured in RPMI 1640 with 20 ng/mL IL-2 and sub-lethal doses of chemotherapeutic drugs (2 μM MEL and 50 nM DXR) for 48 h. Sub-lethal doses of chemotherapeutic agents induced phenotypes associated with senescence, such as the formation of γH2AX nuclear foci, cell proliferation arrest, and induction of senescence-associated beta-galactosidase (SA-β-Gal) activity, (control vs. MEL, DXR; median mean fluorescence intensity (MFI) 1883 (1130–2163) vs. 2233 (1385–2254), 2406.5 (1377–3119), respectively) in T cells. IL6 and SPP1 mRNA, which are senescence-associated secretory phenotype (SASP) factors, were significantly upregulated by sublethal doses of MEL and DXR compared to the control (P = 0.043 and 0.018, respectively). Moreover, sub-lethal doses of chemotherapeutic agents significantly enhanced the expression of programmed death 1 (PD-1) on CD3 + CD4 + and CD3 + CD8 + T cells compared to the control (CD4 + T cells; P = 0.043, 0.043, and 0.043, respectively, CD8 + T cells; P = 0.043, 0.043, and 0.043, respectively). Our results suggest that sub-lethal doses of chemotherapeutic agents induce senescence in T cells and tumor immunosuppression by upregulating PD-1 expression on T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. di DaddaFagagna F. Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer. 2008;8:512–22.

    Article  Google Scholar 

  2. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432:307–15.

    Article  CAS  PubMed  Google Scholar 

  3. Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113:3613–22.

    Article  CAS  PubMed  Google Scholar 

  4. Dimri GP, Lee X, Basile G, Acosta M, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srivastava M, Raghavan SC. DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol. 2015;22:17–29.

    Article  CAS  PubMed  Google Scholar 

  6. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–9.

    Article  CAS  PubMed  Google Scholar 

  7. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15:1139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, He T, Xue L, Guo H. Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brenchley JM, Karandikar NJ, Betts MR, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101:2711–20.

    Article  CAS  PubMed  Google Scholar 

  10. Henson SM, Franzese O, Macaulay R, et al. KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood. 2009;113:6619–28.

    Article  CAS  PubMed  Google Scholar 

  11. Huang B, Liu R, Wang P, et al. CD8+CD57+ T cells exhibit distinct features in human non-small cell lung cancer. J Immunother Cancer. 2020;8:e000639.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trintinaglia L, Bandinelli LP, Grassi-Oliveira R, et al. Features of immunosenescence in women newly diagnosed with breast cancer. Front Immunol. 2018;9:1651.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akagi J, Baba H. Prognostic value of CD57(+) T lymphocytes in the peripheral blood of patients with advanced gastric cancer. Int J Clin Oncol. 2008;13:528–35.

    Article  CAS  PubMed  Google Scholar 

  14. Tan J, Chen S, Lu Y, et al. Higher PD-1 expression concurrent with exhausted CD8+ T cells in patients with de novo acute myeloid leukemia. Chin J Cancer Res. 2017;29:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saavedra D, García B, Lorenzo-Luaces P, et al. Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother. 2016;65:37–45.

    Article  CAS  PubMed  Google Scholar 

  16. Onyema OO, Decoster L, Njemini R, et al. Shifts in subsets of CD8+ T-cells as evidence of immunosenescence in patients with cancers affecting the lungs: an observational case-control study. BMC Cancer. 2015;15:1016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bruni E, Cazzetta V, Donadon M, et al. Chemotherapy accelerates immune-senescence and functional impairments of Vδ2pos T cells in elderly patients affected by liver metastatic colorectal cancer. J Immunother Cancer. 2019;7:347.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shimatani K, Nakashima Y, Hattori M, Hamazaki Y, Minato N. PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia. Proc Natl Acad Sci USA. 2009;106:15807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat. 2012;15:123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plunkett FJ, Franzese O, Belaramani LL, et al. The impact of telomere erosion on memory CD8+ T cells in patients with X-linked lymphoproliferative syndrome. Mech Ageing Dev. 2005;126:855–65.

    Article  CAS  PubMed  Google Scholar 

  21. Ye J, Huang X, Hsueh EC, et al. Human regulatory T cells induce T-lymphocyte senescence. Blood. 2012;120:2021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu W, Stachura P, Xu HC, Bhatia S, Borkhardt A, Lang PA, Pandyra AA. Senescent tumor CD8+ T cells: mechanisms of induction and challenges to immunotherapy. Cancers (Basel). 2020;12:2828.

    Article  PubMed  Google Scholar 

  23. Hoare M, Shankar A, Shah M, et al. γ-H2AX+CD8+ T lymphocytes cannot respond to IFN-α, IL-2 or IL-6 in chronic hepatitis C virus infection. J Hepatol. 2013;58(5):868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Mo W, Ye J, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tahir S, Fukushima Y, Sakamoto K, et al. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J Immunol. 2015;194:5725–35.

    Article  CAS  PubMed  Google Scholar 

  26. Callender LA, Carroll EC, Bober EA, Akbar AN, Solito E, Henson SM. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19(2):e13067.

    Article  CAS  PubMed  Google Scholar 

  27. .

  28. Mondal AM, Horikawa I, Pine SR, et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest. 2013;123:5247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henson SM, Lanna A, Riddell NE, et al. signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest. 2014;124:4004–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukushima Y, Minato N, Hattori M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm Regen. 2018;38:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haymaker C, Wu R, Bernatchez C, Radvanyi L. PD-1 and BTLA and CD8(+) T-cell “exhaustion” in cancer: “Exercising” an alternative viewpoint. Oncoimmunology. 2012;1:735–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Janelle V, Neault M, Lebel MÈ, et al. p16INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Front Immunol. 2021;12:698565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15:397–408.

    Article  CAS  PubMed  Google Scholar 

  34. Muroyama Y, Manne S, Wellhausen N, et al. Induction of a CD8 T cell intrinsic DNA damage and repair response is associated with clinical response to PD-1 blockade in uterine cancer. bioRxiv. doi: https://doi.org/10.1101/2022.04.16.488552.

  35. Petersen CT, Hassan M, Morris AB, et al. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists. Blood Adv. 2018;2:210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mika T, Ladigan-Badura S, Maghnouj A, et al. Altered T-lymphocyte biology following high-dose melphalan and autologous stem cell transplantation with implications for adoptive T-cell therapy. Front Oncol. 2020;10:568056.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez IJ, Lalinde Ruiz N, Llano León M, et al. Immunosenescence study of T cells: a systematic review. Front Immunol. 2021;11:604591.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reece PA, Hill HS, Green RM, et al. Renal clearance and protein binding of melphalan in patients with cancer. Cancer Chemother Pharmacol. 1988;22:348–52.

    Article  CAS  PubMed  Google Scholar 

  39. Mross K, Maessen P, van der Vijgh WJ, Gall H, Boven E, Pinedo HM. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J Clin Oncol. 1988;6:517–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. TK designed the research, performed most of the experiments, performed analysis and wrote the manuscript; MA-S, RI, YM, YM, NG and TO performed some of the experiments and data collection; AY, IM, HH and NT collected the samples; HM and TS supervised all of the research work.

Corresponding author

Correspondence to Tetsuhiro Kasamatsu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Gunma University Hospital (Approval # HS2019-247) and with the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasamatsu, T., Awata-Shiraiwa, M., Ishihara, R. et al. Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clin Exp Med 23, 2695–2703 (2023). https://doi.org/10.1007/s10238-023-01034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01034-z

Keywords

Navigation