Skip to main content

Advertisement

Log in

Diminished PD-L1 regulation along with dysregulated T lymphocyte subsets and chemokine in ANCA-associated vasculitis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

ANCA-associated vasculitis (AAV) is a life-threatening disease characterized by small vessel inflammation and pathogenic self-directed antibodies. Programmed death-ligand 1 receptor (PD-1) and programmed cell death ligand-1 (PD-L1) are immune checkpoint molecules crucial for maintaining tolerance and immune homeostasis. After checkpoint inhibition therapy, development of various autoimmune diseases and immune-related adverse events (irAEs) have been observed. Here, we investigated the immunomodulatory roles of neutrophils through the expression of immune checkpoint molecule (PD-L1), migratory molecules (CXCR2), chemotactic chemokines (CXCL5) and other important molecules (BAFF and HMGB1) in development of AAV. We also scrutinized the immune mechanism responsible for development of pauci-immune crescentic GN (PICGN). We demonstrate for the first time that the frequency of PD-L1 expressing neutrophils was significantly reduced in AAV patients compared to healthy controls and correlated negatively with disease severity (BVASv3). Further, in renal biopsy, reduced PD-L1 immune checkpoint expression provides a microenvironment that unleashes uncontrolled activated CD4 + T cells, B cells, neutrophils and macrophages and ultimately causes engulfment of immune complexes leading to PICGN. Furthermore, during remission, reduced neutrophils PD-L1 and CXCR2 expression, increased neutrophils CXCL5 expression and increased peripheral effector memory T cells and increased HMGB1 and BAFF levels in serum, demonstrate the propensity for the persistence of sub-clinical inflammation, which could explain relapse, in this group of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Arthritis Rheum Off J Am Coll Rheumatol. 1994;37(2):187–92.

    Article  CAS  Google Scholar 

  2. Falk RJ, Jennette JC. ANCA disease: where is this field heading? J Am Soc Nephrol. 2010;21(5):745–52.

    Article  CAS  PubMed  Google Scholar 

  3. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun [Internet]. 2021;123: 102702.

    Article  PubMed  Google Scholar 

  5. Juneja VR, McGuire KA, Manguso RT, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214(4):895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin W, Hu L, Zhang X, et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol. 2019;10:2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes. 2018;67(8):1471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoneda S, Imagawa A, Hosokawa Y, et al. T-lymphocyte infiltration to islets in the pancreas of a patient who developed type 1 diabetes after administration of immune checkpoint inhibitors. Diabetes Care. 2019;42(7):e116–8.

    Article  CAS  PubMed  Google Scholar 

  9. van den Brom RRH, Abdulahad WH, Rutgers A, et al. Rapid granulomatosis with polyangiitis induced by immune checkpoint inhibition. Rheumatology. 2016;55:1143–5.

    Article  PubMed  Google Scholar 

  10. Roger A, Groh M, Lorillon G, et al. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) induced by immune checkpoint inhibitors. Ann Rheum Dis. 2019;78(8):e82–e82.

    Article  PubMed  Google Scholar 

  11. Gallan AJ, Alexander E, Reid P, Kutuby F, Chang A, Henriksen KJ. Renal vasculitis and pauci-immune glomerulonephritis associated with immune checkpoint inhibitors. Am J Kidney Dis. 2019;74(6):853–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sibille A, Alfieri R, Malaise O, et al. Granulomatosis with polyangiitis in a patient on programmed death-1 inhibitor for advanced non-small-cell lung cancer. Front Oncol. 2019;9:478.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mamlouk O, Lin JS, Abdelrahim M, et al. Checkpoint inhibitor-related renal vasculitis and use of rituximab. J Immunother cancer. 2020;8(2): e000750.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nabel CS, Severgnini M, Hung YP, et al. Anti-PD-1 immunotherapy-induced flare of a known underlying relapsing vasculitis mimicking recurrent cancer. Oncologist. 2019;24(8):1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu DI, Ni Z, Liu X, et al. Beyond T cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019;2019:1919082.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang J-F, Li J-B, Zhao Y-J, et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology. 2015;122(4):852–63.

    Article  CAS  PubMed  Google Scholar 

  17. Luo Q, Huang Z, Ye J, et al. PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus. Arthritis Res Ther. 2016;18(1):1–11.

    Article  CAS  Google Scholar 

  18. McNab FW, Berry MPR, Graham CM, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol. 2011;41(7):1941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowers NL, Helton ES, Huijbregts RPH, Goepfert PA, Heath SL, Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014;10(3): e1003993.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Curran CS, Kopp JB. PD-1 immunobiology in glomerulonephritis and renal cell carcinoma. BMC Nephrol. 2021;22(1):1–19.

    Article  Google Scholar 

  21. Anguiano L, Kain R, Anders H-J. The glomerular crescent: triggers, evolution, resolution, and implications for therapy. Curr Opin Nephrol Hypertens. 2020;29(3):302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh J, Sharma A, Rani L, et al. Distinct HLA and non-HLA associations in different subtypes of ANCA-associated vasculitides in North India. Int J Rheum Dis. 2020;23(7):958–65.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Wang L, Li M, Zhang F, Zeng X. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc. 2021;120(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Watanabe R, Berry GJ, et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci. 2017;114(6):E970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeisbrich M, Chevalier N, Sehnert B, et al. CMTM6-deficient monocytes in ANCA-associated vasculitis fail to present the immune checkpoint PD-L1. Front Immunol. 2021;12: 673912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Al Mushafi A, Ooi JD, Odobasic D. Crescentic Glomerulonephritis: Pathogenesis and Therapeutic Potential of Human Amniotic Stem Cells. Front Physiol. 2021;12: 724186.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ernandez T, Mayadas TN. The Changing Landscape of Renal Inflammation. Trends Mol Med. 2016;22(2):151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soukou S, Huber S, Krebs CF. T cell plasticity in renal autoimmune disease. Cell Tissue Res. 2021;385(2):323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gan P-Y, Steinmetz OM, Tan DSY, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2010;21(6):925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Disteldorf EM, Krebs CF, Paust H-J, et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol. 2015;26(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Crabill GA, Pritchard TS, et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother cancer. 2019;7(1):1–12.

    Article  Google Scholar 

  32. Hartley G, Regan D, Guth A, Dow S. Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunol Immunother. 2017;66(4):523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tipping PG, Holdsworth SR. T cells in crescentic glomerulonephritis. J Am Soc Nephrol. 2006;17(5):1253–63.

    Article  PubMed  Google Scholar 

  34. Black LM, Lever JM, Agarwal A. Renal inflammation and fibrosis: a double-edged sword. J Histochem Cytochem. 2019;67(9):663–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Müller A, Krause B, Kerstein-Stähle A, et al. Granulomatous inflammation in ANCA-associated vasculitis. Int J Mol Sci. 2021;22(12):6474.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mao Z, Zhang J, Shi Y, et al. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9(7):1–14.

    Article  Google Scholar 

  37. Hu N, Westra J, Rutgers A, et al. Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Arthritis Res Ther. 2011;13(6):R201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreuzaler M, Rauch M, Salzer U, et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. J Immunol. 2012;188(1):497–503.

    Article  CAS  PubMed  Google Scholar 

  39. Pollard RPE, Abdulahad WH, Vissink A, et al. Serum levels of BAFF, but not APRIL, are increased after rituximab treatment in patients with primary Sjogren’s syndrome: data from a placebo-controlled clinical trial. Ann Rheum Dis. 2013;72(1):146–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lilliebladh S, Johansson Å, Pettersson Å, Ohlsson S, Hellmark T. Phenotypic Characterization of Circulating CD4 + T Cells in ANCA-Associated Vasculitis. J Immunol Res. 2018;2018:1–12.

    Article  Google Scholar 

  41. Berden AE, Jones RB, Erasmus DD, et al. Tubular lesions predict renal outcome in antineutrophil cytoplasmic antibody–associated glomerulonephritis after rituximab therapy. J Am Soc Nephrol. 2012;23(2):313–21.

    Article  CAS  PubMed  Google Scholar 

  42. Solimando AG, Ribatti D, Vacca A, et al. Targeting B-cell non Hodgkin lymphoma: New and old tricks. Leuk Res. 2016;42:93–104.

    Article  CAS  PubMed  Google Scholar 

  43. Smith RM, Jones RB, Specks U, Bond S, Nodale M, Aljayyousi R, et al. Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis. Ann Rheum Dis. 2020;79(9):1243–9.

    Article  CAS  PubMed  Google Scholar 

  44. Solimando AG, Vacca A, Dammacco F. Highlights in clinical medicine—Giant cell arteritis, polymyalgia rheumatica and Takayasu’s arteritis: pathogenic links and therapeutic implications. Clin Exp Med. 2021. https://doi.org/10.1007/s10238-021-00770-4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang G, Hu P, Yang J, Shen G, Wu X. The effects of PDL-Ig on collagen-induced arthritis. Rheumatol Int. 2011;31(4):513–9.

    Article  CAS  PubMed  Google Scholar 

  46. Song M-Y, Hong C-P, Park SJ, et al. Protective effects of Fc-fused PD-L1 on two different animal models of colitis. Gut. 2015;64(2):260–71.

    Article  CAS  PubMed  Google Scholar 

  47. Reynolds J, Sando GS, Marsh OB, et al. Stimulation of the PD-1/PDL-1 T-cell co-inhibitory pathway is effective in treatment of experimental autoimmune glomerulonephritis. Nephrol Dial Transplant. 2012;27(4):1343–50.

    Article  CAS  PubMed  Google Scholar 

  48. Ding H, Wu X, Wu J, et al. Delivering PD-1 inhibitory signal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome in autoimmune BXSB mice. Clin Immunol. 2006;118(2–3):258–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The manpower for this work was supported by the Indian Council of Medical Research (ICMR), New Delhi (Grant/Award no. 3/1/3/JRF-2015(2)/HRD).

Funding

This work was supported by Institutional Grant of PGIMER (Grant No. 71/2-Edu-16/142).

Author information

Authors and Affiliations

Authors

Contributions

JS executed the study, analysed the data, and wrote the manuscript. RWM designed and mentored the study, edited and corrected the manuscript. BS gave inputs, and played an active role in use of PCR-arrays for kidney biopsy gene expression. RN reported and provided the histopathological details of kidney biopsy. AS treated and managed the patients, and provided the clinical details of the patients. SJ helped in recruitment and patient treatment. SA contributed to execution and standardization of experiments, and helped in analysis of kidney biopsy gene expression data. MR treated the pauci-immune crescentic GN patients. SD treated patients of minimal change disease, lupus nephritis and pauci-immune crescentic GN. All authors approved the final version of the manuscript and concurred on its submission.

Corresponding author

Correspondence to Ranjana Walker Minz.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent to participate

All participants signed informed consent form for participation in the study.

Consent for publication

Not applicable.

Ethics approval

The present study was approved by the Ethics Committee of Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh (IEC approval no: INT/IEC/2016/2515), and was performed in compliance with the Helsinki Declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 461 KB)

Supplementary file2 (PDF 432 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Minz, R.W., Saikia, B. et al. Diminished PD-L1 regulation along with dysregulated T lymphocyte subsets and chemokine in ANCA-associated vasculitis. Clin Exp Med 23, 1801–1813 (2023). https://doi.org/10.1007/s10238-022-00908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00908-y

Keywords

Navigation