Skip to main content

Advertisement

Log in

Inhibition of yes-associated protein suppresses migration, invasion, and metastasis in non-small cell lung cancer in vitro and in vivo

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is a highly aggressive cancer with one of the most prevalent malignant tumors. Metastasis in NSCLC is the major cause of treatment failure and cancer-related deaths. Yes-associated protein (YAP) is a transcriptional coactivator regulated by the evolutionarily conserved Hippo signaling pathway that regulates organ size, growth, and regeneration. YAP is highly expressed in several malignant tumor types. Furthermore, YAP promotes tumor initiation and/or progression in various types of cancer. However, it is unclear whether YAP contributes to the metastasis in NSCLC and serves as a useful therapeutic target. Here, we investigated whether levels of YAP correlate with metastatic phenotype in NSCLC cells and serve as a useful therapeutic target. We found that high levels of YAP associate with high cell migration, invasion, and metastasis in NSCLC cell lines. Furthermore, YAP siRNA decreased the migration and invasion in NSCLC cells. Additionally, verteporfin, an agent used for the treatment of symptomatic polypoidal choroidal vasculopathy, decreased the expression of YAP and inhibited migration, invasion, and metastasis in NSCLC cells. Thus, the study suggests that targeting YAP may present a new avenue to develop therapeutics against metastasis in NSCLC and that verteporfin has potential molecular therapeutic strategy for the treatment of metastatic NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Morgensztern D, Ng SH, Gao F, Govindan R. Trends in stage distribution for patients with non-small cell lung cancer: a National Cancer Database survey. J Thorac Oncol. 2010;5:29–33.

    Article  PubMed  Google Scholar 

  3. Hsu PC, Miao J, Huang Z, et al. Inhibition of yes-associated protein suppresses brain metastasis of human lung adenocarcinoma in a murine model. J Cell Mol Med. 2018;22:3073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    Article  CAS  PubMed  Google Scholar 

  5. Yu T, Li J, Yan M, et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene. 2015;34:413–23.

    Article  CAS  PubMed  Google Scholar 

  6. Lang-Lazdunski L. Surgery for nonsmall cell lung cancer. Eur Respir Rev. 2013;22:382–404.

    Article  PubMed  Google Scholar 

  7. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    Article  CAS  PubMed  Google Scholar 

  9. Hsu PC, Yang CT, Jablons DM, You L. The crosstalk between Src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC). Cancers (Basel). 2020;12:1361.

    Article  CAS  PubMed Central  Google Scholar 

  10. Patel S, Alam A, Pant R, Chattopadhyay S. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol. 2019;10:2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res. 2019;12:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsubaki M, Takeda T, Sakamoto K, et al. Bisphosphonates and statins inhibit expression and secretion of MIP-1α via suppression of Ras/MEK/ERK/AML-1A and Ras/PI3K/Akt/AML-1A pathways. Am J Cancer Res. 2014;5:168–79.

    PubMed  PubMed Central  Google Scholar 

  14. Tsubaki M, Mashimo K, Takeda T, et al. Statins inhibited the MIP-1α expression via inhibition of Ras/ERK and Ras/Akt pathways in myeloma cells. Biomed Pharmacother. 2016;78:23–9.

    Article  CAS  PubMed  Google Scholar 

  15. Tsubaki M, Komai M, Fujimoto S, et al. Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines. J Exp Clin Cancer Res. 2013;32:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Takeda T, Tsubaki M, Sakamoto K, et al. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol. 2016;306:105–12.

    Article  CAS  PubMed  Google Scholar 

  17. Michels S, Schmidt-Erfurth U. Photodynamic therapy with verteporfin: a new treatment in ophthalmology. Semin Ophthalmol. 2001;16:201–6.

    Article  CAS  PubMed  Google Scholar 

  18. Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEADYAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma L, Shan L. ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway. Exp Lung Res. 2021;47:250–9.

    Article  CAS  PubMed  Google Scholar 

  20. Huang SH, Kao YH, Muller CJF, Joubert E, Chuu CP. Aspalathin-rich green Aspalathus linearis extract suppresses migration and invasion of human castration-resistant prostate cancer cells via inhibition of YAP signaling. Phytomedicine. 2020;69:153210.

    Article  CAS  PubMed  Google Scholar 

  21. Harvey K, Tapon N. The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer. 2007;7:182–91.

    Article  CAS  PubMed  Google Scholar 

  22. Pan D. Hippo signaling in organ size control. Genes Dev. 2007;21:886–97.

    Article  CAS  PubMed  Google Scholar 

  23. Yanyan H. Analysis of the role of the hippo pathway in cancer. J Transl Med. 2019;17:116.

    Article  Google Scholar 

  24. Dong X, Meng L, Liu P, et al. YAP/TAZ: a promising target for squamous cell carcinoma treatment. Cancer Manag Res. 2019;11:6245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Francesca Z, Michelangelo C, Stefano P. YAP and TAZ: a signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19:454–64.

    Article  CAS  Google Scholar 

  26. Tsubaki M, Genno S, Takeda T, et al. Rhosin suppressed tumor cell metastasis through inhibition of rho/yap pathway and expression of rhamm and cxcr4 in melanoma and breast cancer cells. Biomedicines. 2021;9:E35.

    Article  CAS  Google Scholar 

  27. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci. 2010;101:1279–85.

    Article  CAS  PubMed  Google Scholar 

  28. Xu MZ, Yao TJ, Lee NP, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115:4576–85.

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Mao B, Cheng C, et al. YAP promotes breast cancer metastasis by repressing growth differentiation factor-15. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1744–53.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Yang S, Chen X, et al. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol. 2015;35:1350–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie H, Wu L, Deng Z, Huo Y, Cheng Y. Emerging roles of YAP/TAZ in lung physiology and diseases. Life Sci. 2018;214:176–83.

    Article  CAS  PubMed  Google Scholar 

  33. Lo Sardo F, Strano S, Blandino G. YAP and TAZ in lung cancer: oncogenic role and clinical targeting. Cancers (Basel). 2018;10:137.

    Article  CAS  Google Scholar 

  34. Miao J, Hsu PC, Yang YL, et al. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget. 2017;8:114576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Isago H, Mitani A, Mikami Y, et al. Epithelial expression of YAP and TAZ Is sequentially required in lung development. Am J Respir Cell Mol Biol. 2020;62:256–66.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. BioEssays. 2020;42:e1900162.

    Article  PubMed  Google Scholar 

  37. Warren JSA, Xiao Y, Lamar JM. YAP/TAZ activation as a target for treating metastatic cancer. Cancers (Basel). 2018;10:115.

    Article  CAS  Google Scholar 

  38. Yang S, Zhang L, Purohit V, et al. Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget. 2015;6:36019–43031.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhou PJ, Xue W, Peng J, et al. Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway. J Exp Clin Cancer Res. 2017;36:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vigneswaran K, Boyd NH, Oh SY, et al. YAP/TAZ Transcriptional coactivators create therapeutic vulnerability to verteporfin in EGFR-mutant glioblastoma. Clin Cancer Res. 2021;27:1553–69.

    Article  CAS  PubMed  Google Scholar 

  41. Song JM, Upadhyaya P, Kassie F. Nitric oxide-donating aspirin (NO-Aspirin) suppresses lung tumorigenesis in vitro and in vivo and these effects are associated with modulation of the EGFR signaling pathway. Carcinogenesis. 2018;39:911–20.

    Article  CAS  PubMed  Google Scholar 

  42. Phan AN, Hua TN, Kim MK, et al. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7:54702–13.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang B, Shao W, Shi Y, Liao J, Chen X, Wang C. Verteporfin induced SUMOylation of YAP1 in endometrial cancer. Am J Cancer Res. 2020;10:1207–17.

    PubMed  PubMed Central  Google Scholar 

  44. Dong L, Lin F, Wu W, Liu Y, Huang W. Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci. 2018;15:645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huggett MT, Jermyn M, Gillams A, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110:1698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Young Scientists from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

T.T. performed the analysis of the RNA interference, trypan blue exclusion assay, cell migration and invasion assays, and in vivo metastasis model and drafted the manuscript. M.T. and S.G. performed the analysis of the Trypan blue exclusion assay, cell migration and invasion assays, western blotting analysis, and statistical analysis. T.M., A.K., and N.S. carried out analysis of the RNA interference, cell migration and invasion assays, western blotting analysis, and in vivo metastasis model. S.N. designed the experiments and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shozo Nishida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We perform the in vivo animal studies in accordance with the Recommendations for Handling of Laboratory Animals for Biomedical Research compiled by the Committee on Safety and Ethical Handling Regulations for Laboratory Animal Experiments, Kindai University and the United Kingdom Coordinating Committee for Cancer Research (UKCCCR) guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, T., Tsubaki, M., Genno, S. et al. Inhibition of yes-associated protein suppresses migration, invasion, and metastasis in non-small cell lung cancer in vitro and in vivo. Clin Exp Med 22, 221–228 (2022). https://doi.org/10.1007/s10238-021-00738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00738-4

Keywords

Navigation