Skip to main content

Advertisement

Log in

The effects of streptokinase in a Chacma baboon (Papio ursinus) model of acquired thrombotic thrombocytopenic purpura

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

TTP is a life-threatening disorder with limited pharmaceutical treatment options. Recently, the potential of streptokinase in the treatment of acquired TTP was demonstrated in humans in vitro, and in vivo in a mouse model. We aimed to determine the in vitro and in vivo effects of streptokinase in an established Papio ursinus model of acquired TTP. In vitro: VWF activities & multimer patterns and thromboelastograms were assessed with increasing concentrations of streptokinase. In vivo: After induction of TTP, escalating streptokinase doses (ranging from 50,000 to 900,000 IU) were administered, and the effects of streptokinase assessed on peripheral blood counts, fibrinolysis, VWF activities & multimer patterns and thromboelastograms. In an extension of the study, high-dose streptokinase (1,500,000–3,000,000 IU) was administered to another baboon. After spiking, fibrinolysis with loss of large VWF multimers was observed at [2200 IU/mL]—roughly equivalent to 1,500,000 IU. However, administration of escalating intravenous streptokinase doses had no in vivo effect on the TTP phenotype, and in vivo increases in plasmin activity were mild when compared with baseline, even at high doses. Minimal effect on VWF multimer patterns was observed but only at doses ≥ 1500,000 IU. Streptokinase is not effective in resolving TTP in a Papio ursinus model of TTP, possibly due to limited activation of the baboon fibrinolytic system. Modifications to this model, the use of alternative higher animal models, or alternative thrombolytics, should be considered to establish proof-of-concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kremer Hovinga JA, Lämmle B. Role of ADAMTS13 in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. Hematology Am Soc Hematol Educ Program. 2012;2012:610–6.

    Article  Google Scholar 

  2. Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158:323–35.

    Article  Google Scholar 

  3. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.

    Article  CAS  Google Scholar 

  4. Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;34(2):139–60.

    Article  Google Scholar 

  5. Malak S, Wolf M, Millot GA, Mariotte E, Veyradier A, Meynard JL, et al. Human immunodeficiency virus-associated thrombotic microangiopathies: clinical characteristics and outcome according to ADAMTS13 activity. Scand J Immunol. 2008;68(3):337–44.

    Article  CAS  Google Scholar 

  6. Chauhan AK. Degradation of platelet-von Willebrand factor complexes by plasmin: an alternative/backup mechanism to ADAMTS13. Circulation. 2014;129(12):1273–5.

    Article  Google Scholar 

  7. Tersteeg C, de Maat S, De Meyer SF, Smeets MW, Barendrecht AD, Roest M, et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation. 2014;129(12):1320–31.

    Article  CAS  Google Scholar 

  8. Brophy TM, Ward SE, McGimsey TR, Schneppenheim S, Drakeford C, O’Sullivan JM, et al. Plasmin cleaves Von Willebrand Factor at K1491–R1492 in the A1–A2 Linker region in a shear- and glycan-dependent manner in vitro. Arterioscler Thromb Vasc Biol. 2017;37(5):845–55.

    Article  CAS  Google Scholar 

  9. Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW. Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood. 2000;96(8):2775–83.

    Article  CAS  Google Scholar 

  10. Graham CH, Fitzpatrick TE, McCrae KR. Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood. 1998;91(9):3300–7.

    Article  CAS  Google Scholar 

  11. Tersteeg C, Joly BS, Gils A, Lijnen R, Deckmyn H, Declerck PJ, et al. Amplified endogenous plasmin activity resolves acute thrombotic thrombocytopenic purpura in mice. J Thromb Haemost. 2017;15(12):2432–42.

    Article  CAS  Google Scholar 

  12. Tersteeg C, Fijnheer R, Pasterkamp G, de Groot PG, Vanhoorelbeke K, de Maat S, et al. Keeping von Willebrand factor under control: alternatives for ADAMTS13. Semin Thromb Hemost. 2016;42(1):9–17.

    Article  CAS  Google Scholar 

  13. Bryan J. The rise and fall of the clot buster. Pharm J. 2014;293(7819):1–8.

    Google Scholar 

  14. Vanhoorelbeke K, De Meyer SF. Animal models for thrombotic thrombocytopenic purpura. J Thromb Haemost. 2013;11(Suppl. 1):2–10.

    Article  Google Scholar 

  15. Feys HB, Roodt J, Vandeputte N, Pareyn I, Lamprecht S, Van Rensburg WJ, et al. Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood. 2010;116(12):2005–10.

    Article  CAS  Google Scholar 

  16. Feys HB, Roodt J, Vandeputte N, Pareyn I, Mottl H, Hou S, et al. Inhibition of von Willebrand factor-platelet glycoprotein Ib interaction prevents and reverses symptoms of acute acquired thrombotic thrombocytopenic purpura in baboons. Blood. 2012;120(17):3611–4.

    Article  CAS  Google Scholar 

  17. Callewaert F, Roodt J, Ulrichts H, Stohr T, Janse van Rensburg W, Lamprecht S, et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120(17):3603–10.

    Article  CAS  Google Scholar 

  18. Tersteeg C, Roodt J, Van Rensburg WJ, Dekimpe C, Vandeputte N, Pareyn I, et al. N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood. 2017;129(8):1030–8.

    Article  CAS  Google Scholar 

  19. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362-425.

    PubMed  Google Scholar 

  20. Fortman JD, Hewett TA, Bennett BT. Important biological features The Laboratory Nonhuman Primate. 1st ed. Boca Raton: CRC Press; 2002. p. 1–34.

    Google Scholar 

  21. Meiring M, Badenhorst PN, Kelderman M. Laboratory diagnosis of von Willebrand Disease. Eur Oncol Haematol. 2009;3(1):33–6.

    Article  Google Scholar 

  22. Krizek DR, Rick ME. A rapid method to visualize von willebrand factor multimers by using agarose gel electrophoresis, immunolocalization and luminographic detection. Thromb Res. 2000;97(6):457–62.

    Article  CAS  Google Scholar 

  23. Zini G, d’Onofrio G, Briggs C, Erber W, Jou JM, Lee SH, et al. ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes. Int J Lab Hematol. 2012;34(2):107–16.

    Article  CAS  Google Scholar 

  24. Israels LG, Israels ED. Fibrinogen, factor XIII and fibrinolysis. In: Mechanisms in Hematology. 3rd Edition. Ontario, Canada: Core Health Services Inc; 2002.

  25. Meiring M, Badenhorst PN, Kelderman M. Performance and utility of a cost-effective collagen-binding assay for the laboratory diagnosis of Von Willebrand disease. Clin Chem Lab Med. 2007;45(8):1068–72.

    Article  CAS  Google Scholar 

  26. Collen D, De Cock F, Stassen JM. Comparative immunogenicity and thrombolytic properties toward arterial and venous thrombi of streptokinase and recombinant staphylokinase in baboons. Circulation. 1993;87(3):996–1006.

    Article  CAS  Google Scholar 

  27. Lijnen HR, De Cock F, Matsuo O, Collen D. Comparative fibrinolytic and fibrinogenolytic properties of staphylokinase and streptokinase in plasma of different species in vitro. Fibrinolysis. 1992;6(1):33–7.

    Article  CAS  Google Scholar 

  28. Hampton JW, Matthews C. Similarities between baboon and human blood clotting. J Appl Physiol. 1966;21:1713–6.

    Article  CAS  Google Scholar 

  29. Technoclone. Technozym® PAP Complex ELISA Kit Package Insert. Technoclone GmbH, Vienna, Austria. 2012.

  30. Technoclone. Technozym® Glu-Plasminogen ELISA Package Insert. Technoclone GmbH, Vienna, Austria. 2014.

  31. Janse van Rensburg WJ. Molecular suitability of the chacma baboon in human-targeted Von Willebrand factor directed studies. J Med Primatol. 2019;48(3):171–5.

    Article  CAS  Google Scholar 

  32. Hamilton KK, Fretto LJ, Grierson DS, McKee PA. Effects of plasmin on von Willebrand factor multimers. Degradation in vitro and stimulation of release in vivo. J Clin Invest. 1985;76(1):261–70.

    Article  CAS  Google Scholar 

  33. Peyvandi F, Palla R, Lotta LA, Mackie I, Scully MA, Machin SJ. ADAMTS-13 assays in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2010;8(4):631–40.

    Article  CAS  Google Scholar 

  34. Janse van Rensburg WJ. Comparison of common platelet receptors between the chacma baboon (Papio ursinus) and human for use in pre-clinical human-targeted anti-platelet studies. Platelets. 2016;27(4):322–32.

    Article  CAS  Google Scholar 

  35. Janse van Rensburg WJ, Badenhorst PN, Roodt JP. The Cape Chacma baboon is not suitable for evaluating human targeted anti-GPVI agents. Platelets. 2015;26(6):552–7.

    Article  CAS  Google Scholar 

  36. Ponschab M, van Griensven M, Heitmeier S, Laux V, Schlimp CJ, Calatzis A, et al. Platelet function in baboons and humans—a comparative study of whole blood using impedance platelet aggregometry (Multiplate®). Thromb Res. 2016;147:115–21.

    Article  CAS  Google Scholar 

  37. Schochl H, Solomon C, Laux V, Heitmeier S, Bahrami S, Redl H. Similarities in thromboelastometric (ROTEM(R)) findings between humans and baboons. Thromb Res. 2012;130(3):e107–12.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Karen Vanhoorelbeke and Claudia Tersteeg of the IRF Life Sciences Laboratory for Thrombosis Research, Kulak Kortrijk Campus of KU Leuven, Kortrijk, Belgium, for supply of the 3H9 monoclonal antibody used for the induction of TTP, for supply of the method used for the determination of plasmin activity, and for technical and scientific advice on the execution of the low and intermediate dose in vivo experiment, as well as Christie Blaauw for assistance with the in vitro experiments’ laboratory assays and data collection.

Author information

Authors and Affiliations

Authors

Contributions

JJ, SMM, and WJVR designed research, performed experiments, collected, analysed, and interpreted data, and co-wrote the manuscript; CC performed experiments, collected and analysed data, and reviewed the manuscript for technical content; SL designed research and performed experiments.

Corresponding author

Correspondence to J. Joubert.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joubert, J., Meiring, S.M., Conradie, C. et al. The effects of streptokinase in a Chacma baboon (Papio ursinus) model of acquired thrombotic thrombocytopenic purpura. Clin Exp Med 21, 663–674 (2021). https://doi.org/10.1007/s10238-021-00711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-021-00711-1

Keywords

Navigation