Skip to main content

Advertisement

Log in

Overexpression of miR-27a predicts poor prognosis and promotes the progression in cholangiocarcinoma

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The function of microRNA-27a (miR-27a) expression in cholangiocarcinoma (CCA) remains largely unclear; therefore, this study aimed to investigate the clinical significance and functional role of miR-27a in CCA. This study included 117 paired CCA tissues and adjacent normal tissues from CCA patients who received surgical resection. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression levels of miR-27a in CCA tissues and cell lines. A Kaplan–Meier curve and Cox regression analysis were used to determine overall prognostic performance. The effects of miR-27a on cell proliferation, migration, and invasion were measured by CCK-8 and Transwell assays. The expression levels of miR-27a in patients with CCA and cell lines were higher than those in adjacent normal tissues and normal cells, respectively. Additionally, miR-27a levels were found to be associated with lymph node metastasis and TNM stages. The overall survival time of CCA patients with high miR-27a expression was poorer than that of those with low miR-27a expression. Furthermore, miR-27a overexpression promoted CCA cell proliferation, migration, and invasion, whereas knockdown of miR-27a suppressed cell proliferation, migration, and invasion. Taken together, these results suggest the potential usefulness of miR-27a in the prognosis and progression of CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCA:

Cholangiocarcinoma

qRT-PCR:

Reverse transcription-quantitative polymerase chain reaction

miRNAs:

MicroRNAs

HIBEpic:

Human intrahepatic bile duct epithelial cell line

NCs:

Negative controls

cDNA:

Complementary DNA

CCK-8:

Cell counting kit-8

HR:

Hazard ratio

CI:

Confidence interval

TNM:

Tumor–node–metastasis

References

  1. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79.

    Article  Google Scholar 

  2. Blechacz B. Cholangiocarcinoma: current knowledge and new developments. Gut Liver. 2017;11(1):13–26.

    Article  Google Scholar 

  3. Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48(1):308–21.

    Article  CAS  Google Scholar 

  4. Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2017;116:11–31.

    Article  Google Scholar 

  5. Zhang D, Li H, Xie J, et al. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. Int J Oncol. 2018;52(6):1777–866.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.

    Article  CAS  Google Scholar 

  7. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  Google Scholar 

  9. Yuan G, Wu H, Du Y, He F. Tumor suppressor role of microRNA-545 in oral squamous cell carcinoma. Oncol Lett. 2019;17(2):2063–8.

    CAS  PubMed  Google Scholar 

  10. Li J, Chen M, Yu B. miR-433 suppresses tumor progression via Smad2 in non-small cell lung cancer. Pathol Res Pract. 2019;215:152591.

    Article  CAS  Google Scholar 

  11. He FY, Liu HJ, Guo Q, Sheng JL. Reduced miR-300 expression predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2017;21(4):760–4.

    PubMed  Google Scholar 

  12. Li X, Xu M, Ding L, Tang J. MiR-27a: a novel biomarker and potential therapeutic target in tumors. J Cancer. 2019;10(12):2836–48.

    Article  CAS  Google Scholar 

  13. Collins AL, Wojcik S, Liu J, et al. A differential microRNA profile distinguishes cholangiocarcinoma from pancreatic adenocarcinoma. Ann Surg Oncol. 2014;21(1):133–8.

    Article  Google Scholar 

  14. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95–111.

    Article  CAS  Google Scholar 

  15. Puik JR, Meijer LL, Le Large TY, et al. miRNA profiling for diagnosis, prognosis and stratification of cancer treatment in cholangiocarcinoma. Pharmacogenomics. 2017;18(14):1343–58.

    Article  CAS  Google Scholar 

  16. Kim EY, Lee SS, Shin JH, Kim SH, Shin DH, Baek SY. Anticancer effect of arsenic trioxide on cholangiocarcinoma: in vitro experiments and in vivo xenograft mouse model. Clin Exp Med. 2014;14(2):215–24.

    Article  CAS  Google Scholar 

  17. Zhang J, Zheng Z, Zhao Y, Zhang T, Gu X, Yang W. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells. Clin Exp Med. 2013;13(4):323–8.

    Article  CAS  Google Scholar 

  18. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

    Article  CAS  Google Scholar 

  19. Namwat N, Chusorn P, Loilome W, et al. Expression profiles of oncomir miR-21 and tumor suppressor let-7a in the progression of opisthorchiasis-associated cholangiocarcinoma. Asian Pac J Cancer Prev. 2012;13(Suppl):65–9.

    PubMed  Google Scholar 

  20. Pan B, He B, Xu X, et al. MicroRNA-371-3 cluster as biomarkers for the diagnosis and prognosis of cancers. Cancer Manag Res. 2019;11:5437–57.

    Article  CAS  Google Scholar 

  21. Alizadeh M, Safarzadeh A, Beyranvand F, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol. 2019;234(11):19280–97.

    Article  CAS  Google Scholar 

  22. An JX, Ma ZS, Ma MH, Shao S, Cao FL, Dai DQ. MiR-1236-3p serves as a new diagnostic and prognostic biomarker for gastric cancer. Cancer Biomark. 2019;25(2):127–32.

    Article  CAS  Google Scholar 

  23. Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52(4):297–303.

    Article  CAS  Google Scholar 

  24. Sun C, Zhu J, Wu B, et al. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: a systematic review and meta-analysis. Cancer Manag Res. 2018;10:2125–39.

    Article  CAS  Google Scholar 

  25. Deng Y, Chen Y. Increased expression of miR-29a and its prognostic significance in patients with cholangiocarcinoma. Oncol Res Treat. 2017;40(3):128–32.

    Article  CAS  Google Scholar 

  26. Ling J, Dong X, Wang L, et al. MiR-27a-regulated FOXO1 promotes pancreatic ductal adenocarcinoma cell progression by enhancing Wnt/beta-catenin signaling activity. Am J Transl Res. 2019;11(5):3069–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Si L, Jia Y, Lin R, Jian W, Yu Q, Yang S. MicroRNA-27a regulates the proliferation, chemosensitivity and invasion of human ovarian cancer cell lines by targeting Cullin 5. Arch Biochem Biophys. 2019;668:9–15.

    Article  CAS  Google Scholar 

  28. Zhou L, Liang X, Zhang L, et al. MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget. 2016;7(32):51943–54.

    Article  Google Scholar 

  29. Wang X, An D, Liu X, Wang X, Li B. MicroRNA-27a downregulates the expression of Hsp90 and enhances the radiosensitivity in esophageal squamous cell carcinoma. Onco Targets Ther. 2019;12:5967–77.

    Article  CAS  Google Scholar 

  30. Li E, Han K, Zhou X. MicroRNA-27a-3p down-regulation inhibits malignant biological behaviors of ovarian cancer by targeting BTG1. Open Med (Wars). 2019;14:577–85.

    Article  CAS  Google Scholar 

  31. Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y. miR-27a-3p functions as a tumor suppressor and regulates non-small cell lung cancer cell proliferation via targeting HOXB8. Technol Cancer Res Treat. 2019;18:1533033819861971.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang W, Zhu J, Su S, et al. MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS ONE. 2012;7(12):e51702.

    Article  CAS  Google Scholar 

  33. Liang J, Tang J, Shi H, et al. miR-27a-3p targeting RXRalpha promotes colorectal cancer progression by activating Wnt/beta-catenin pathway. Oncotarget. 2017;8(47):82991–3008.

    Article  Google Scholar 

  34. Maghsudlu M, Farashahi Yazd E, Amiriani T. Increased expression of MiR-27a and MiR-24-2 in esophageal squamous cell carcinoma. J Gastrointest Cancer. 2019;51:227–33.

    Article  Google Scholar 

  35. Ba S, Xuan Y, Long ZW, Chen HY, Zheng SS. MicroRNA-27a promotes the proliferation and invasiveness of colon cancer cells by targeting SFRP1 through the Wnt/beta-catenin signaling pathway. Cell Physiol Biochem. 2017;42(5):1920–33.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YL made substantial contributions to the conception and design of the study and analysis and interpretation of the data. YL, XL, and YZ performed the experiments and completed the acquisition of data. TL and JL contributed to the patients' recruitments and the acquisition of tissue specimens and collected important background information. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunxia Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The current study was approved by the Ethics Committee of the Affiliated Hospital of Weifang Medical University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Zhou, Y. et al. Overexpression of miR-27a predicts poor prognosis and promotes the progression in cholangiocarcinoma. Clin Exp Med 21, 121–128 (2021). https://doi.org/10.1007/s10238-020-00655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00655-y

Keywords

Navigation