Skip to main content
Log in

Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

One of the most common mechanisms of immune evasion in MSI colorectal cancers (CRCs) is loss of HLA class I expression due to mutations in B2M gene which can become a negative predictor for checkpoint blockade therapy. The aim of this study was the determination of prevalence of B2M somatic mutations in MSI CRC patients and relationship between B2M mutations and lymphocytes infiltration and other clinicopathological features as well as detection of methylation changes in B2M promoter region which can be another mechanism of immune escape. In our study, 37 MSI-H and 5 MSI-L patients were selected for screening of B2M mutational and methylation status. The characterization of patients was based on standard histopathological diagnosis and TNM classification; BRAF, KRAS mutations, tumor-infiltrating lymphocytes and peritumoral lymphoid reaction were also determined. MSI analysis was performed using fragment analysis. B2M mutations were identified by Sanger sequencing, and methylation of CpG islands in promoter region was detected by methylation-specific PCR. Heterozygous mutations in the B2M gene were detected in five MSI-H patients (13.5%), while the mutation c.45_48delTTCT was determined in four patients and mutation c.276delC was found in two patients. One of these five patients was compound heterozygote harboring both mutations. Methylation of the promoter region of the B2M gene was observed in one patient with MSI-H colorectal cancer. Detection of genetic and epigenetic changes in B2M gene could be important in personalized therapy for CRC patients as these changes may be one of the mechanisms of secondary resistance of MSI positive tumors to immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer. 2005;92:1746–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kloor M, Von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends Cancer. 2016;2:121–33.

    Article  PubMed  Google Scholar 

  3. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87.

    Article  CAS  PubMed  Google Scholar 

  4. Jung SB, Lee HI, Oh HK, Shin IH, Jeon CH. Clinico-pathologic parameters for prediction of microsatellite instability in colorectal cancer. Cancer Res Treat. 2012;44:179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immuno reactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010;127:1001–10.

    Article  CAS  PubMed  Google Scholar 

  11. Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P. Selection for beta 2-microglobulin mutation in mismatch repair defective colorectal carcinomas. Curr Biol. 1996;6:1695–7.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto H, Yamashita K, Perucho M. Somatic mutation of the beta2-microglobulin gene associates with unfavorable prognosis in gastrointestinal cancer of the microsatellite mutator phenotype. Gastroenterology. 2001;120:1565–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–8.

    Article  CAS  PubMed  Google Scholar 

  14. Tikidzhieva A, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clendenning M, Huang A, Jayasekara H, Investigators from the Melbourne Collaborative Cohort Study and the Australasian Colorectal Cancer Family Registry Cohort, et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam Cancer. 2018;17:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018;8:730–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeon Yeon S, Jung SH, Jo YS, et al. Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract. 2019;215:209–14.

    Article  CAS  PubMed  Google Scholar 

  18. Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174:1462–71.

    Article  CAS  PubMed  Google Scholar 

  19. Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother. 2007;56:227–36.

    Article  CAS  PubMed  Google Scholar 

  20. Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kašubová I, Kalman M, Jašek K, et al. Stratification of patients with colorectal cancer without the recorded family history. Oncol Lett. 2019;17:3649–56.

    PubMed  PubMed Central  Google Scholar 

  23. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2009.

    Google Scholar 

  24. Jenkins MA, Hayashi S, O’Shea AM, Colon Cancer Family Registry, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population—based study. Gastroenterology. 2007;133:48–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hyde A, Fontaine D, Stuckless S, et al. A histology-based model for predicting microsatellite instability in colorectal cancers. Am J Surg Pathol. 2010;34:1820–9.

    Article  PubMed  Google Scholar 

  26. Lasabová Z, Kalman M, Holubeková V, et al. Mutation analysis of POLE gene in patients with early onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clin Exp Med. 2019;19:393–400.

    Article  PubMed  Google Scholar 

  27. Jasek K, Buzalkova V, Minarik G, et al. Detection of mutations in the BRAF gene in patients with KIT and PDGFRA wild-type gastrointestinal stromal tumors. Virchows Arch. 2017;470:29–36.

    Article  CAS  PubMed  Google Scholar 

  28. Harlé A, Busser B, Rouyer M, et al. Comparison of COBAS 4800, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch. 2013;462:329–35.

    Article  PubMed  CAS  Google Scholar 

  29. Vanova B, Kalman M, Jasek K, et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med. 2019;19:219–24.

    Article  CAS  PubMed  Google Scholar 

  30. Lasabova Z, Tilandyova P, Kajo K, et al. Hypermethylation of the GSTP1 promoter region in breast cancer is associated with prognostic clinicopathological parameters. Neoplasma. 2010;57:35–40.

    Article  CAS  PubMed  Google Scholar 

  31. Ding S, Gong BD, Yu J, et al. Methylation profile of the promoter CpG islands of 14 “drug-resistance” genes in hepatocellular carcinoma. World J Gastroenterol. 2004;10:3433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. www.R-project.org/.

  33. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  34. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2014;21:687–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155:858–68.

    Article  CAS  PubMed  Google Scholar 

  37. Koelzer VH, Baker K, Kassahn D, Baumhoer D, Zlobec I. Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol. 2012;65:996–1002.

    Article  PubMed  Google Scholar 

  38. Janikovits J, Müller M, Krzykalla J, et al. High numbers of PDCD1 (PD-1)-positive T cells and B2M mutations in microsatellite-unstable colorectal cancer. Oncoimmunology. 2018;7:e1390640.

    Article  PubMed  Google Scholar 

  39. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  40. Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39.

    Article  PubMed  Google Scholar 

  41. Bicknell DC, Rowan A, Bodmer WF. Beta2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proc Natl Acad Sci USA. 1994;91:4751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens. 2003;61:211–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hill DM, Kasliwal T, Schwarz E, et al. A dominant negative mutant beta 2-microglobulin blocks the extracellular folding of a major histocompatibility complex class I heavy chain. J Biol Chem. 2003;278:5630–8.

    Article  CAS  PubMed  Google Scholar 

  44. Sucker A, Zhao F, Real B, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20:6593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–92.

    Article  CAS  PubMed  Google Scholar 

  46. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–86.

    Article  CAS  PubMed  Google Scholar 

  47. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    Article  CAS  PubMed  Google Scholar 

  48. Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg. 2011;141:808–14.

    Article  PubMed  CAS  Google Scholar 

  49. van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004;16:67–75.

    Article  PubMed  CAS  Google Scholar 

  50. Serrano A, Tanzarella S, Lionello I, et al. Expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer. 2001;94:243–51.

    Article  CAS  PubMed  Google Scholar 

  51. Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class-I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001;22:1615–23.

    Article  CAS  PubMed  Google Scholar 

  52. Ye Q, Shen Y, Wang X, et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens. 2010;75:30–9.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci USA. 2016;113:5999–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gyorffy B, Nagy A, Pongor L. Effect of DNA hypermethylation on immune escape through downregulation of antigen presentation genes in breast cancer. J Clin Oncol. 2016;34(15 suppl):11547.

    Article  Google Scholar 

Download references

Funding

This work was supported by the projects of the Slovak Research and development Agency APVV Grant APVV-16-0066 and Grant VEGA 1/0380/18 from the Ministry of Education, Science, Research and Sport of the Slovak republic and by Grant (ITMS 26220220113) cofinanced by the European Union sources. Biomedical Center Martin (ITMS 26220220187) was cofinanced by the European Union and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Kruzliak or Zora Lasabova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snahnicanova, Z., Kasubova, I., Kalman, M. et al. Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer. Clin Exp Med 20, 87–95 (2020). https://doi.org/10.1007/s10238-019-00601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00601-7

Keywords

Navigation