Skip to main content

Advertisement

Log in

The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Hereditary angioedema (HAE) is a rare autosomic-dominant disorder characterized by a deficiency of C1 esterase inhibitor which causes episodic swellings of subcutaneous tissues, bowel walls and upper airways that are disabling and potentially life-threatening. We evaluated n = 17 patients with confirmed HAE diagnosis during attack and remission state and n = 19 healthy subjects. The samples were tested for a panel of IL (Interleukin)-17-type cytokines (IL-1β, IL-6, IL-10, granulocyte–macrophage colony stimulating factor (GM-CSF), IL-17, IL-21, IL-22, IL-23) and transforming growth factor-beta (TGF-β) subtypes. Data indicate that there are variations of cytokine levels in HAE subjects comparing the condition during the crisis respect to the value in the remission phase, in particular type 17 signature cytokines are increased, whereas IL-23 is unmodified and TGF-β3 is significantly reduced. When comparing healthy and HAE subjects in the remission state, we found a significant difference for IL-17, GM-CSF, IL-21, TGF-β1 and TGF-β2 cytokines. These results confirm and extend our previous findings indicating that in HAE there is operating an inflammatory activation process, which involves also T helper 17 (Th17) cytokines and TGF-β isoforms, associated with localized angioedema attacks and characterized by elevated bradykinin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Med (Baltimore). 1992;71(4):206–15.

    Article  CAS  Google Scholar 

  2. Cicardi M, Banerji A, Bracho F, et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. 2010;363(6):532–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A, Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;351:1693–7.

    Article  PubMed  CAS  Google Scholar 

  4. Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and the pathophysiology of angioedema. Int Immunopharmacol. 2003;3:311–7.

    Article  PubMed  CAS  Google Scholar 

  5. Longhurst H, Cicardi M. Hereditary angioedema. Lancet. 2012;379:474–81.

    Article  PubMed  Google Scholar 

  6. Zuraw B. Hereditary angioedema. N Engl J Med. 2008;359:1027–36.

    Article  PubMed  CAS  Google Scholar 

  7. Kusuma A, Relan A, Knulst AC, et al. Clinical impact of peripheral attacks in hereditary angioedema patients. Am J Med. 2012;125:937.e17–24.

    Article  Google Scholar 

  8. Hofman ZLM, Relan A, Hack CE. Hereditary Angioedema attacks: local swelling at multiple sites. Clin Rev Allergy Immunol. 2016;50:34–40.

    Article  PubMed  Google Scholar 

  9. Prematta MG, Kemp JG, Gibbs JG, Mende C, Rhoads C, Craig TJ. Fequency, timing, and type of prodromal symptoms associated with ereditary angioedema attacks. Allergy Asthma Proc. 2009;30:506–11.

    Article  PubMed  Google Scholar 

  10. Magerl M, Doumoulakis G, Kalkounou I, et al. Characterization of prodromal symptoms in a large population of patiets with hereditary angioedema. Clin Exp Dermatol. 2014;39:298–303.

    Article  PubMed  CAS  Google Scholar 

  11. Cillari E, Misiano G, Aricò M, et al. Modification of peripheral blood T-lymphocyte surface receptors and Langerhans cell numbers in hereditary angioedema. Am J Clin Pathol. 1986;85(3):305–11.

    Article  PubMed  CAS  Google Scholar 

  12. Prada AE, Zahedi K, Davis AE. Regulation of C1 inhibitor synthesis. Immunobiology. 1998;199(2):377–88 (Review).

    Article  PubMed  CAS  Google Scholar 

  13. Gluszko P, Undas A, Amenta S, Szczeklik A, Schmaier AH. Administration of gamma interferon in human subjects decreases plasminogen activation and fibrinolysis without influencing C1 inhibitor. J Lab Clin Med. 1994;123(2):232–40.

    PubMed  CAS  Google Scholar 

  14. Arcoleo F, Salemi M, La Porta A, et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clin Chem Lab Med. 2014;52(5):e91–3.

    Article  PubMed  CAS  Google Scholar 

  15. Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. 2016;138:359–66.

    Article  PubMed  CAS  Google Scholar 

  17. Berrettini M, Lammle B, White T, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68:455–61.

    PubMed  CAS  Google Scholar 

  18. Cua DJ, Tato CM. Innate IL-17 producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  PubMed  CAS  Google Scholar 

  19. Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78–88.

    Article  PubMed  CAS  Google Scholar 

  20. Marks BR, Nowyhed HN, Choi JY, et al. Thymic self-reactivity selects natural interleukin 17-producing cells thet can regulate peripheral inflammation. Nat Immunol. 2009;10:1125–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Romagnani S. Human Th17 cells. Arthr Res Therapy. 2008;10(2):206 (Review).

    Article  CAS  Google Scholar 

  22. Acosta-Rodriguez EV, Rivino L, Geginat J, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.

    Article  PubMed  CAS  Google Scholar 

  23. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–7.

    Article  PubMed  CAS  Google Scholar 

  24. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517 (Review).

    Article  PubMed  CAS  Google Scholar 

  25. Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 2011;32(12):603–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature. 2001;448:484–7.

    Article  CAS  Google Scholar 

  27. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.

    Article  PubMed  CAS  Google Scholar 

  28. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Alam MS, Maekawa Y, Kitamura A, et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2010;107:5943–8.

    Article  PubMed  Google Scholar 

  31. Zheng Y, Danilenko DM, Valdez P. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.

    Article  PubMed  CAS  Google Scholar 

  32. McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10by T cells and restrain Th17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.

    Article  PubMed  CAS  Google Scholar 

  33. Esplugues E, Huber S, Gagliani N, et al. Control of Th17cells occurs in the small intestine. Nature. 2011;465:514–8.

    Article  CAS  Google Scholar 

  34. McGeachy MJ, Chen Y, Tato CM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17—producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen Y, Langrish CL, McKenzie B, et al. Anti IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Investig. 2006;116:1317–26.

    Article  PubMed  CAS  Google Scholar 

  37. Chackerian AA, Chen SJ, Brodie SJ, et al. Neutralization or absence of interleukin 23 pathway does not compromise immunity to mycobacterial infection. Infect Immun. 2006;74:6092–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lieberman LA, Cardillo F, Owyang AM, et al. IL 23 provides a limited meccanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol. 2004;173:1887–93.

    Article  PubMed  CAS  Google Scholar 

  39. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.

    Article  PubMed  CAS  Google Scholar 

  40. Xu J, Yang Y, Qiu G, et al. c-Maf regulates IL-10 expression during Th17 polarization. J Immunol. 2009;182(10):6226–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Leipe J, Grunke M, Dechant C, et al. Role of Th17 cells in human autoimmune arthritis. Arthr Rheumatol. 2010;62(10):2876–85.

    Article  CAS  Google Scholar 

  42. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bas M, Adams V, Suvorava T, Niehues T, Hoffmann TK, Kojda G. Nonallergic angioedema: role of bradykinin. Allergy. 2007;10:842–56.

    Article  Google Scholar 

  44. Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1-beta gene expression in cultured human fibroblasts. J Clin Investig. 1996;98:2042–9.

    Article  PubMed  CAS  Google Scholar 

  45. Brovkovych V, Zhang Y, Brovkovych S, Minshall RD, Skidgel RA. A novel pathway for receptor-mediated post-translational activation of inducible nitric oxide synthase. J Cell Mol Med. 2011;15:258–69.

    Article  PubMed  CAS  Google Scholar 

  46. Hofman ZL, Relan A, Hack CE. C-rective protein levels in hereditary angioedema. Clin Exp Immunol. 2014;177:280–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Uzawa A, Mori M, Taniguchi J, Kuwabara S. Modulation of kallikrein/kinin system by the angiotensin-converting enzyme inhibitor alleviates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2014;178:245–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was funded by Hospital funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Arcoleo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcoleo, F., Lo Pizzo, M., Misiano, G. et al. The complex alteration in the network of IL-17-type cytokines in patients with hereditary angioedema. Clin Exp Med 18, 355–361 (2018). https://doi.org/10.1007/s10238-018-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0499-0

Keywords

Navigation