Skip to main content
Log in

MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The mathematical modelling of biological fluids is of utmost importance due to its applications in various fields of medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. The current paper emphasizes on the MHD peristalsis of Jeffrey nanofluid flowing through a vertical channel when subjected to the combined heat/mass transportation. The equations for the current flow scenario are developed with relevant assumptions for which the perturbation technique is followed to simulate the solution. The expressions of velocity, temperature and concentration are obtained, and the solutions of skin-friction coefficient, Nusselt number and Sherwood number at the wall are acquired. Further, the influence of relevant parameters on various physical quantities for both non-Newtonian Jeffery and viscous fluid is graphically analyzed. The outcomes are deliberated in detail Further, it is renowned that the current study has many biomechanical applications such as the movement of chyme motion in the gastrointestinal tract and during the surgery to take control of the flow of blood by adjusting the magnetic field intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\left( {\overline{X},\overline{Y}} \right)\) :

Stationary co-ordinates.

\(\left( {\overline{x},\overline{y}} \right)\) :

Moving co-ordinates.

\(\left( {\overline{U},\overline{V}} \right)\) :

Velocity components in moving frames.

\(\left( {\overline{u},\overline{v}} \right)\) :

Velocity components in fixed frames.

\(T\) :

Dimensional temperature.

\(T_{0}\) :

Reference temperature.

\(T_{1}\) :

Temperature at the plate.

\(C\) :

Dimensional concentration.

\(C_{0}\) :

Reference concentration.

\(C_{1}\) :

Concentration at the plates.

\(a\) :

Dimension of the wall.

\(b\) :

Amplitude.

\(t\) :

Time of fluid flow.

\(m\) :

Non-uniformity parameter.

\(p\) :

Pressure.

\(g\) :

Acceleration due to gravity.

\(k_{T}\) :

Thermal diffusivity.

\(k\) :

Thermal conductivity.

\(B_{0}\) :

Strength of applied magnetic field.

\(q\) :

Volume flow rate in fixed frame.

\(D_{T}\) :

Thermophoretic diffusion coefficient.

\(D_{B}\) :

Brownian motion diffusion coefficient.

\({\text{Re}}\) :

Reynolds number.

\({\text{Gr}}\) :

Grashof number.

\({\text{Br}}\) :

Local nanoparticle Grashof number.

\({\text{Ec}}\) :

Eckert number.

\(\Pr\) :

Prandtl number.

\({\text{N}}\) :

Brinkmann number.

\({\text{Mn}}\) :

Magnetic field parameter.

\({\text{Nt}}\) :

Thermophoresis parameter.

\({\text{Nb}}\) :

Brownian motion parameter.

\(E_{1}\) :

Wall tension parameter.

\(E_{2}\) :

Mass characterizing parameter.

\(E_{3}\) :

Wall damping parameter.

\(E_{4}\) :

Wall rigidity parameter.

\(E_{5}\) :

Wall elastic parameter

\(\varepsilon\) :

Amplitude ratio.

\(\theta\) :

Dimensionless temperature.

\(\phi\) :

Dimensionless concentration.

\(\lambda_{1}\) :

Ratio of relaxation time to retardation time (Jeffery fluid parameter).

\(\lambda_{2}\) :

Delay time.

\(\dot{\gamma }\) :

Shear rate.

\(\psi\) :

Stream function.

\(\mu\) :

Viscosity.

\(\nu\) :

Kinematic viscosity.

\(\rho\) :

Density.

\(\delta\) :

Specific heat at constant volume.

\(\sigma\) :

Electrical conductivity.

\(\alpha_{1}\) :

Velocity slip parameter.

\(\alpha_{2}\) :

Temperature slip parameter.

\(\alpha_{3}\) :

Concentration slip parameter.

\(\Theta\) :

Volume flow rate in wave frame

References

  • Abbasi FM, Hayat T, Alsaedi A (2015) Peristaltic transport of magneto-nanoparticles submerged in water: Model for drug delivery system. Physica E 68:128–132

    Google Scholar 

  • Akbarzadeh P (2017) Peristaltic biofluids flow through vertical porous human vessels using third grade non-Newtonian fluid model. Biomech Model Mechnobiol 17:71–86

    Google Scholar 

  • Akram S, Nadeem S (2014) Significance of nanofluid and partial slip on the peristaltic transport of a non-Newtonian fluid with different waveforms. IEEE Trans Nanotechnology 13:375–385

    Google Scholar 

  • Akram S, Razia A, Afzal F (2020) Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch Appl Mech 90(7):1583–1603

    Google Scholar 

  • Ali A, Ali Y, Marwat DNK, Awais M, Shah Z (2020) Peristaltic flow of nanofluid in a deformable channel with double diffusion. SN Appl Sci 2:100

    Google Scholar 

  • Buongiorno J (2005) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Google Scholar 

  • Butt AW, Akbar NS, Mir NA (2020) Heat transfer analysis of peristaltic flow of Phan-Thien-Tanner fluid model due to metachronal wave of cilia. Biomech Model Mechanobiol 19(5):1925–1933

    Google Scholar 

  • Choi SUS (1960) “Enhancing thermal conductivity of fluids with nanoparticles”, in the proceedings of the ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, California: USA.

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Google Scholar 

  • Farooq S, Khan MI, Hayat T, Waqas M, Alsaedi A (2019) Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J Mol Liq 285:314–322

    Google Scholar 

  • Fateh Mebarek-Oudina A, Aissa BM, Oztop HF (2020) Heat transport of magnetized Newtonian nanofluids in an annular space between porous vertical cylinders with discrete heat source. Int Commun Heat Mass Transf. 117:10473

    Google Scholar 

  • Hassanan A (2019) Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: Utilization of Chesbysev-Gauss-Lobatto spectral method. Nanomater 9(2):195

    Google Scholar 

  • Hayat T, Noreen S, Alsaedi A (2012) Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel. J Mech Med Biol 12:1–26

    Google Scholar 

  • Hayat T, Ahmad B, Abbasi FM, Alsaedi A (2019) Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim 137:1359–1367

    Google Scholar 

  • Kayani SM, Hina S, Mustafa M (2020) A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab J Sci Eng 45(7):5179–5190

    Google Scholar 

  • Khan U, Zaib A, Shah Z, Baleanu D, El-Sayed MS (2020) Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux. Journal of Materials Research and Technology 9(3):3699–3709

    Google Scholar 

  • Kothandapani M, Prakash J (2015) Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluid in a tapered asymmetric channel. Int J Heat Mass Transf 81:234–245

    Google Scholar 

  • Latham TW (1966) Fluid motion in a peristaltic pump. M. S, Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  • Mandviwalla X, Archer R (2008) The influence of slip boundary conditions on peristaltic pumping in a rectangular channel. J Fluids Eng 130:124501–124502

    Google Scholar 

  • Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV (2019) Influence of slip and convective conditions on peristaltic mechanism of Power law fluid through an elastic porous tube with different wave forms. MMMS 16:340–358

    Google Scholar 

  • Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV, Makinde OD, Viharika J (2020a) Impact of variable transport properties and slip effects on MHD Jeffrey fluid flow through channel. Arabian J Sci Eng 45:417–428

    Google Scholar 

  • Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV (2020b) Impact of heat and mass transfer on the peristaltic mechanism of Jeffrey fluid in a non- uniform porous channel with variable viscosity and thermal conductivity. J Therm Anal Calorim 139:1213–1228

    Google Scholar 

  • Marzougui S, Fateh Mebarek-Oudina A, Assia MM, Shah Z, Ramesh K (2020) Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with champers. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09662-3

    Article  Google Scholar 

  • Mebarek-Oudina F (2018) Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete source. Wiley, London

    Google Scholar 

  • Navier CLMH (1827) Sur les lois du movement des fluids. Mem Acad R Sci Inst Fr 6:389–440

    Google Scholar 

  • Nayfeh AH (1973) Perturbation Methods. Wiley-Interscience, New York, NY, USA

    MATH  Google Scholar 

  • Prakash J, Tripathi D, Bég OA (2020) Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis. Appl Nanosci 10(5):1693–1706

    Google Scholar 

  • Qasim M, Ali Z, Wakif A, Boulahia Z (2019) Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized quadrature method. Commun Theor Phys 71:509–518

    MathSciNet  Google Scholar 

  • Qasim M, Afridi MI, Abderrahim Wakif T, Thoi N, Hussanan A (2020) Second law analysis of unsteady MHD viscous flow over a horizontal stretching sheet heated non- uniformly in the presence of Ohmic heating: Utilization of the Gear-generalized differential quadrature method. Entropy. 21(3):240

    MathSciNet  Google Scholar 

  • Rajashekhar C, Manjunatha G, Vaidya H, Khan SU, Prasad KV (2020) Rheological effects on peristaltic transport of Bingham fluid through an elastic tube with variable liquid properties and porous walls. Heat Transf-Asian Res 49(6):3391–3408

    Google Scholar 

  • Raju KK, Devanatham R (1972) Peristaltic motion of a non-Newtonian fluid. Rheol Acta II:170–178

    MATH  Google Scholar 

  • Rasool G, Wakif A (2020) Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09865-8

    Article  Google Scholar 

  • Raza J, Mebarek-Oudina F, Ram P, Sharma S (2020a) MHD flow of non- Newtonian Molybdenum disulfide nanofluid in convergence/divergence channel with Rosseland radiation. DDF 401:92–106

    Google Scholar 

  • Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I (2020b) Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim 140:1277–1291

    Google Scholar 

  • Reddy MG, Makinde OD (2016) Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq 223:1242–1248

    Google Scholar 

  • Rida Ahmad M, Mustafa MT (2017) Buoyancy effects of nanofluids flow past a convectively heated vertical Riga plate: A numerical study. Int J Heat Mass Transf 111:827–835

    Google Scholar 

  • Srinivas ANS, Haseena C, Sreenadh S (2018) Peristaltic transport of Nanofluid in a vertical porous stratum with heat and mass transfer. Biomech 9(1):117–130

    Google Scholar 

  • Sucharitha G, Vajravelu K, Lakshminarayana P (2019) Magnetohydrodynamic nanofluid flow in a non-uniform aligned channel with Joule heating. J Nanofluids 8:1373

    Google Scholar 

  • Tripathi D, Beg O (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70

    Google Scholar 

  • Turkyilmazaglu M (2020) Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput Method Programs Biomed 187:105171

    Google Scholar 

  • Turkyilmazoglu M (2011) Thermal radiation effects on time-dependent MHD permeable flow having variable viscosity. Int J Therm Sci 50:88–96

    Google Scholar 

  • Turkyilmazoglu M (2012) Effects of non-uniform radial electric field on the MHD heat and fluid flow due to rotating disk. Int J Eng Sci 51:233–240

    MATH  Google Scholar 

  • Umair Khan A (2020) Zaib, Fateh Mebarek-Oudina, “Mixed convective magneto flow of SiO2-MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stabiliy analysis.” Arab J Sci Eng 45(11):9061–9073

    Google Scholar 

  • Vaidya H, Rajashekhar C, Manjunatha G, Prasad KV, Makinde OD, Vajravelu K (2020) Heat and Mass Transfer Analysis on MHD Peristaltic flow through a Complaint Porous Channel with Variable Thermal Conductivity and Convective Conditions. Phys Scripta 95(4):05219

    Google Scholar 

  • Wakif A (2020) A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Math Probl Eng. https://doi.org/10.1155/2020/1675350

    Article  MathSciNet  Google Scholar 

  • Wakif A, Qasim M, Afridi MI, Saleem S, Al-Qarni MM (2019) Numerical examination of the entropy generation energy harvesting in a magnetohydrodynamic dissipative flow of Stokes second problem: Utilization of the Gear- generalized differential quadrature method. J Equilib Thermodyn 44(4):385–403

    Google Scholar 

  • Wakif A, Chamka A, Thirupati Thumma IL, Animasaun RS (2020) Thermal radiation and surface roughness effects on the thermo-magneto-hydrodunamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim 143(2):1201–1220

    Google Scholar 

  • Waldrop L, Miller L (2016) Large-amplitude, short-wave peristalsis and its implications for transport. Biomech Model Mechanobiol 15:629–642

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$A_{1} = {\text{Mn}}^{2} \left( {1 + \lambda_{1} } \right)$$
$$A_{2} = \left( {\frac{{{\text{d}}p_{0} }}{{{\text{d}}x}} - {\text{G}} + {\text{Br}}} \right)\left( {1 + \lambda_{1} } \right)$$
$$A_{3} = \frac{{A_{2} }}{{A_{1} \left( {{\text{cos}}h\sqrt {A_{1} } h + \alpha_{1} {\text{sin}}h\sqrt {A_{1} } h} \right)}}$$
$$A_{4} = \frac{{A_{1} A_{3}^{2} }}{2} + \frac{{Mn^{2} A_{3}^{2} }}{2}$$
$$A_{5} = 2{\text{Mn}}^{2} A_{2} A_{3}$$
$$A_{6} = \frac{1}{2}\left( {{\text{Mn}}^{2} \left( {A_{3}^{2} + 2A_{2}^{2} } \right) - A_{3}^{2} A_{1} } \right)$$
$$A_{7} = {\text{G}} + \frac{{{\text{Nt}}}}{{{\text{Nb}}}}{\text{Br}}$$
$$A_{8} = \left( {\alpha_{2} {\text{G}} - \alpha_{3} \frac{{{\text{Nt}}}}{{{\text{Nb}}}}{\text{Br}}} \right)\left( {\frac{{A_{4} }}{{2\sqrt {A_{1} } }}{\text{sin}}h2\sqrt {A_{1} } h + } \right.\left. {\frac{{A_{5} }}{{\sqrt {A_{1} } }}{\text{sin}}h\sqrt {A_{1} } h - A_{6} h} \right)$$
$$A_{{9}} = \frac{{A_{4} }}{{4A_{1}^{2} }}{\text{cos}}h2\sqrt {A_{1} } h + \frac{{A_{5} }}{{A_{1} }}{\text{cos}}h\sqrt {A_{1} } h + \frac{{A_{8} }}{{A_{1} A_{7} }}$$
$$\begin{aligned} A_{{10}} & = - 3A_{1} ^{4} A_{3} A_{9} h - 6\sqrt {A_{1} } A_{2} A_{5} \;h\;{\text{cos}}h\left( {\sqrt {A_{1} } h} \right) + 6A_{2} A_{5} \;{\text{sin}}h\left( {\sqrt {A_{1} } h} \right) + \\ & \quad 3A_{1} ^{{7/2}} A_{3} A_{9} \sin h\left( {\sqrt {A_{1} } h} \right) + 6\alpha _{1} A_{1} A_{2} A_{5} A_{9} h\;{\text{sin}}h\left( {\sqrt {A_{1} } h} \right) + \\ & \quad 6A_{1} ^{{3/2}} A_{3} A_{5} h\sin h^{2} \left( {\sqrt {A_{1} } h} \right) + A_{1} ^{{3/2}} A_{3} A_{4} \sin h^{3} \left( {\sqrt {A_{1} } h} \right) \\ & \quad - \frac{1}{2}\sqrt {A_{1} } A_{2} A_{4} \sin h\left( {2\sqrt {A_{1} } h} \right) \\ \end{aligned}$$
$$\begin{aligned} A_{{11}} & = A_{1} ^{{5/2}} A_{3} A_{4} A_{9} h\sin h^{2} \left( {\sqrt {A_{1} } h} \right) + 3{\text{ }}A_{1} ^{{5/2}} A_{3} A_{6} A_{9} h\sin h^{2} \left( {\sqrt {A_{1} } h} \right) \\ & \quad + A_{1} ^{2} A_{3} A_{4} A_{9} \cos h^{3} \left( {\sqrt {A_{1} } h} \right)\sin h\left( {\sqrt {A_{1} } h} \right) \\ & \quad + A_{1} ^{{5/2}} A_{3} A_{4} A_{9} h\sin h^{4} \left( {\sqrt {A_{1} } h} \right) \\ \end{aligned}$$
$$\begin{aligned} A_{{12}} & = \cos h\left( {\sqrt {A_{1} } h} \right)\left( {6\alpha _{1} A_{1} ^{{3/2}} A_{2} A_{5} A_{9} h^{2} } \right. + \frac{1}{2}\alpha _{1} A_{1} ^{2} A_{3} A_{9} \left( { - 5A_{4} + 6A_{1} A_{6} h^{2} } \right. + {\text{ }} \\ {\text{ }} & \quad \left. {\left. {3A_{4} \cos h\left( {2\sqrt {A_{1} } h} \right)\sin h\left( {\sqrt {A_{1} } h} \right)} \right)} \right) \\ \end{aligned}$$
$$A_{{13}} = A_{1} ^{{3/2}} A_{3} A_{4} \cosh ^{2} \left( {\sqrt {A_{1} } h} \right)\left( {1 + 3\alpha _{1} A_{1} A_{9} h\sinh ^{2} \left( {\sqrt {A_{1} } h} \right)} \right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, H., Rajashekhar, C., Prasad, K.V. et al. MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement. Biomech Model Mechanobiol 20, 1047–1067 (2021). https://doi.org/10.1007/s10237-021-01430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01430-y

Keywords

Navigation