Skip to main content
Log in

Red blood cell tolerance to shear stress above and below the subhemolytic threshold

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical circulatory support device (MCS) design has improved over the years and yet blood damage (e.g., hemolysis) remains a problem. Accumulating evidence indicates a subhemolytic threshold for red blood cells (RBC)—a threshold at which RBC deformability is impaired prior to hemolysis. The current study aimed to assess the deformability of RBC exposed to supra-physiological shear stresses that are typical of MCS devices and assess whether a method used to estimate an individualized subhemolytic threshold, accurately demarcates whether future application of shear stress was damaging. Suspensions of RBC were “conditioned” with discrete magnitudes of shear stress (5–100 Pa) for specific durations (1–16 s). Cellular deformability was subsequently measured via ektacytometry and a mechanical sensitivity (MS) index was calculated to identify the subhemolytic threshold. Thereafter, fresh RBC suspensions were exposed to a magnitude of shear stress 10 Pa above, 10 Pa below, or matched to a donor’s previously estimated subhemolytic threshold for a given duration (1, 4, 16 s) to ascertain the sensitivity of the subhemolytic threshold. The MS index of RBC was significantly impaired following exposure to 10 Pa above the subhemolytic threshold (p < 0.0001), and significantly enhanced following exposure to 10 Pa below the subhemolytic threshold (p < 0.01). For all shear conditions, there was no significant increase in free hemoglobin. Functional assessments of RBC may be useful when conducting biocompatibility testing of MCS devices, to detect trauma to blood prior to overt cell rupture being induced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

The authors thank Mr. Kieran Richardson for assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarod T. Horobin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horobin, J.T., Sabapathy, S. & Simmonds, M.J. Red blood cell tolerance to shear stress above and below the subhemolytic threshold. Biomech Model Mechanobiol 19, 851–860 (2020). https://doi.org/10.1007/s10237-019-01252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-019-01252-z

Keywords

Navigation