Skip to main content
Log in

Effect of boundary conditions on yield properties of human femoral trabecular bone

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7–72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient \(R^{2} \ge 0.93\). As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM (2005) The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng 126(6):677–684. doi:10.1115/1.1763177

    Article  Google Scholar 

  • Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM (2006) Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6):1218–1225. doi:10.1016/j.bone.2006.06.016

    Article  Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4(2):137–147. doi:10.1016/0167-6636(85)90012-2

    Article  Google Scholar 

  • Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P (2012) QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 23(2):563–572. doi:10.1007/s00198-011-1568-3

    Article  Google Scholar 

  • Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D (2013) A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 52(1):27–38. doi:10.1016/j.bone.2012.09.006

    Article  Google Scholar 

  • Gross T (2014) Development and application of 3d CT image-based micro and macro finite element models for human bones and orthopedic implant systems. In: PhD thesis, Vienna University of Technology

  • Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19(3):761–767. doi:10.1007/BF00540446

    Article  Google Scholar 

  • Harrigan TP, Jasty M, Mann RW, Harris WH (1988) Limitations of the continuum assumption in cancellous bone. J Biomech 21(4):269–275. doi:10.1016/0021-9290(88)90257-6

    Article  Google Scholar 

  • Hazanov S, Amieur M (1995) On overall properties of elastic heterogeneous bodies smaller than the representative volume. Int J Eng Sci 33(9):1289–1301. doi:10.1016/0020-7225(94)00129-8

    Article  MATH  Google Scholar 

  • Hazanov S, Huet C (1994) Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J Mech Phys Solids 42(12):1995–2011. doi:10.1016/0022-5096(94)90022-1

    Article  MathSciNet  MATH  Google Scholar 

  • Homminga J, Mccreadie BR, Weinans H, Huiskes R (2003) The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech 36(10):1461–1467. doi:10.1016/S0021-9290(03)00125-8

    Article  Google Scholar 

  • Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A (1997) Systematic and random errors in compression testing of trabecular bone. J Orthop Res 15(1):101–110. doi:10.1002/jor.1100150115

    Article  Google Scholar 

  • Keaveny TM, Wachtel EF, Zadesky SP, Arramon YP (1999) Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. J Biomech Eng 121(1):99–107. doi:10.1115/1.2798051

    Article  Google Scholar 

  • Kelly N, McGarry JP (2012) Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater 9:184–197. doi:10.1016/j.jmbbm.2011.11.013

    Article  Google Scholar 

  • MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213. doi:10.1016/j.bone.2008.01.017

    Article  Google Scholar 

  • Matsuura M, Eckstein F, Lochmüller EM, Zysset PK (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7(1):27–42. doi:10.1007/s10237-006-0073-7

    Article  Google Scholar 

  • Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34(5):569–577. doi:10.1016/S0021-9290(01)00011-2

    Article  Google Scholar 

  • Nawathe S, Juillard F, Keaveny TM (2013) Theoretical bounds for the influence of tissue-level ductility on the apparent-level strength of human trabecular bone. J Biomech 46(7):1293–1299. doi:10.1016/j.jbiomech.2013.02.011

    Article  Google Scholar 

  • Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12):1575–1583. doi:10.1016/S0021-9290(00)00149-4

    Article  Google Scholar 

  • Niebur GL, Feldstein MJ, Keaveny TM (2002) Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 124(6):699–705

    Article  Google Scholar 

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132. doi:10.1016/j.probengmech.2005.07.007

    Article  Google Scholar 

  • Pahr D, Zysset P (2008) Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol 7(6):463–476

    Article  Google Scholar 

  • Panyasantisuk J, Pahr DH, Gross T, Zysset PK (2015) Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses. J Biomech Eng 137(1):011002. doi:10.1115/1.4028968

    Article  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168. doi:10.1016/0021-9290(88)90008-5

    Article  Google Scholar 

  • Riedler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):630–632. doi:10.1109/TSMC.1978.4310039

    Article  Google Scholar 

  • Rincón-Kohli L, Zysset PK (2008) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8(3):195–208. doi:10.1007/s10237-008-0128-z

    Article  Google Scholar 

  • Sambrook P, Cooper C (2006) Osteoporosis. The Lancet 367(9527):2010–2018. doi:10.1016/S0140-6736(06)68891-0

    Article  Google Scholar 

  • Sanyal A, Scheffelin J, Keaveny TM (2015) The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone. J Biomech Eng. doi:10.1115/1.4029109

  • Schwiedrzik J, Gross T, Bina M, Pretterklieber M, Zysset P, Pahr D (2015) Experimental validation of a nonlinear FE model based on cohesive-frictional plasticity for trabecular bone. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.2739

  • Schwiedrzik JJ, Zysset PK (2012) An anisotropic elastic-viscoplastic damage model for bone tissue. Biomech Model Mechanobiol 12(2):201–213. doi:10.1007/s10237-012-0392-9

    Article  Google Scholar 

  • Schwiedrzik JJ, Wolfram U, Zysset PK (2013) A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. doi:10.1007/s10237-013-0472-5

    Google Scholar 

  • Steiner JA, Ferguson SJ, van Lenthe GH (2015) Computational analysis of primary implant stability in trabecular bone. J Biomech 48(5):807–815. doi:10.1016/j.jbiomech.2014.12.008

    Article  Google Scholar 

  • Stölken JS, Kinney JH (2003) On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone 33(4):494–504. doi:10.1016/S8756-3282(03)00214-X

    Article  Google Scholar 

  • Verhulp E, van Rietbergen B, Müller R, Huiskes R (2008) Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 41(7):1479–1485. doi:10.1016/j.jbiomech.2008.02.032

    Article  Google Scholar 

  • Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101(2):153–168. doi:10.1111/j.1365-2818.1974.tb03878.x

    Article  Google Scholar 

  • Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke HJ, Zysset PK (2012) Fabric-based Tsai–Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed Mater 15:218–228. doi:10.1016/j.jmbbm.2012.07.005

    Article  Google Scholar 

  • World Health Organization (2003) Prevention and management of osteoporosis. World Health Organization Technical Report Series, vol 921, pp 1–164, back cover

  • Zysset PK, Ominsky MS, Goldstein SA (1999) A novel 3d microstructural model for trabecular. Comput Methods Biomech Biomed Eng 2(1):1–11. doi:10.1080/10255849908907974

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Uwe Wolfram for the helpful guidance in postprocessing and Dr. Markus Bina for setting up the ParFEAP software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Panyasantisuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyasantisuk, J., Pahr, D.H. & Zysset, P.K. Effect of boundary conditions on yield properties of human femoral trabecular bone. Biomech Model Mechanobiol 15, 1043–1053 (2016). https://doi.org/10.1007/s10237-015-0741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0741-6

Keywords

Navigation