Skip to main content
Log in

A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We present a simplified two-dimensional model of fluid flow, solute transport, and cell distribution in a hollow fibre membrane bioreactor. We consider two cell populations, one undifferentiated and one differentiated, with differentiation stimulated either by growth factor alone, or by both growth factor and fluid shear stress. Two experimental configurations are considered, a 3-layer model in which the cells are seeded in a scaffold throughout the extracapillary space (ECS), and a 4-layer model in which the cell–scaffold construct occupies a layer surrounding the outside of the hollow fibre, only partially filling the ECS. Above this is a region of free-flowing fluid, referred to as the upper fluid layer. Following previous models by the authors (Pearson et al. in Math Med Biol, 2013, Biomech Model Mechanbiol 1–16, 2014a, we employ porous mixture theory to model the dynamics of, and interactions between, the cells, scaffold, and fluid in the cell–scaffold construct. We use this model to determine operating conditions (experiment end time, growth factor inlet concentration, and inlet fluid fluxes) which result in a required percentage of differentiated cells, as well as maximising the differentiated cell yield and minimising the consumption of expensive growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.lifetechnologies.com/order/catalog/product/PHC7141?ICID=searchproduct.

  2. Personal communication with Dr Marianne Ellis, Centre for Regenerative Medicine, University of Bath.

  3. We note that the values for D and \(C^*\) are for different growth factors; this is due to a scarcity of data as these parameters are rarely quantified experimentally.

References

  • Abdullah NS, Das DB (2007) Modelling nutrient transport in hollow fibre membrane bioreactor for growing bone tissue with consideration of multi-component interactions. Chem Eng Sci 62(21):5821–5839. doi:10.1016/j.ces.2007.06.024

    Article  Google Scholar 

  • Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122(4):546–553. doi:10.1242/jcs.036293

    Article  Google Scholar 

  • Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114(2):521–532

    Google Scholar 

  • Brouwers JEM, van Donkelaar CC, Sengers BG, Huiskes R (2006) Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech 39(15):2774–2782. doi:10.1016/j.jbiomech.2005.10.004

    Article  Google Scholar 

  • Byrne HM, Owen MR, Alarcon T, Murphy J, Maini PK (2006) Modelling the response of vascular tumours to chemotherapy: A multiscale approach. Math Models Methods Appl Sci 16(7S):1219–1241. doi:10.1142/S0218202506001522

    Article  MathSciNet  MATH  Google Scholar 

  • Gramer MJ, Poeschl DM (2000) Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system. Cytotechnology 34(1–2):111–119. doi:10.1023/A:1008167713696

    Article  Google Scholar 

  • Kapur S, Baylink DJ, Lau K-HW (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251. doi:10.1016/S8756-3282(02)00979-1

    Article  Google Scholar 

  • Keane JT, Ryan D, Gray PP (2003) Effect of shear stress on expression of a recombinant protein by chinese hamster ovary cells. Biotech Bioeng 81:211–220

    Article  Google Scholar 

  • Knazek RA, Gullino PM, Kohler PO, Dedrick RL (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178(4056):65–67. doi:10.1126/science.178.4056.65

    Article  Google Scholar 

  • Knazek RA, Kohler PO, Gullino PM (1974) Hormone production by cells grown in vitro on artificial capillaries. Exp Cell Res 84(1–2):251–254. doi:10.1016/0014-4827(74)90403-0

    Article  Google Scholar 

  • Korin N, Bransky A, Dinnar U, Levenberg S (2009) Periodic “flow-stop” perfusion micro channel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdev 11:87–94

    Article  Google Scholar 

  • Lemon G, King JR, Byrne HM, Jensen OE, Shakesheff KM (2006) Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J Math Biol 52:571–594. doi:10.1007/s00285-005-0363-1

    Article  MathSciNet  MATH  Google Scholar 

  • Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609. doi:10.1016/j.biomaterials.2004.03.005

    Article  Google Scholar 

  • Mac Gabhann F, Yang MT, Popel AS (2005) Monte Carlo simulations of VEGF binding to cell surface receptors in vitro. Biochim Biophys Acta Mol Cell Res 1746(2):95–107. doi:10.1016/j.bbamcr.2005.09.004

    Article  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86. doi:10.1016/j.tibtech.2003.12.001

    Article  Google Scholar 

  • Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26(35):7481–7503. doi:10.1016/j.biomaterials.2005.05.057

    Article  Google Scholar 

  • Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95(4):827–839. doi:10.1002/jcb.20462

    Article  Google Scholar 

  • Meneghello G, Parker DJ, Ainsworth BJ, Perera SP, Chaudhuri JB, Ellis MJ, De Bank PA (2009) Fabrication and characterization of poly(lactic-co-glycolic acid)/polyvinyl alcohol blended hollow fibre membranes for tissue engineering applications. J Membr Sci 344(1–2):55–61. doi:10.1016/j.memsci.2009.07.034

    Article  Google Scholar 

  • Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 199(1):380–386. doi:10.1006/bbrc.1994.1240

    Article  Google Scholar 

  • Mohebbi-Kalhori D, Behzadmehr A, Doillon CJ, Hadjizadeh A (2012) Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering. J Artif Organs 15:250–265. doi:10.1007/s10047-012-0649-1

    Article  Google Scholar 

  • Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 106(1):203–211. doi:10.1152/japplphysiol.00197.2008

    Article  Google Scholar 

  • O’Dea RD, Waters SL, Byrne HM (2010) A multiphase model for tissue construct growth in a perfusion bioreactor. Math Med Biol 27(2):95–127. doi:10.1093/imammb/dqp003

    Article  MathSciNet  MATH  Google Scholar 

  • Park J, Li Y, Berthiaume F, Toner M, Yarmouth ML, Tilles AW (2008) Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotech Bioeng 99:455–467

    Article  Google Scholar 

  • Pearson NC, Shipley RJ, Waters SL, Oliver JM (2013) Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor. Math Med Biol. doi:10.1093/imammb/dqt015

  • Pearson NC, Waters SL, Oliver JM, Shipley RJ (2014a) Multiphase modelling of the effect of fluid shear stress on cell yield and distribution in a hollow fibre membrane bioreactor. Biomech Model Mechanbiol 1–16. doi:10.1007/s10237-014-0611-7

  • Pearson NC, Shipley RJ, Waters SL, Oliver JM (2014b) Dispersion-enhanced solute transport in a cell-seeded hollow fibre membrane bioreactor. J Eng Math. doi:10.1007/s10665-015-9819-5

  • Peters KG, De Vries C, Williams LT (1993) Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 90(19):8915–8919

    Article  Google Scholar 

  • Planchamp C, Vu TL, Mayer JM, Reist M, Testa B (2003) Hepatocyte hollow-fibre bioreactors: design, set-up, validation and applications. J Pharm Pharmacol 55(9):1181–1198. doi:10.1211/0022357021963

    Article  Google Scholar 

  • Plank MJ, Sleeman BD, Jones PF (2004) A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 229(4):435–454. doi:10.1016/j.jtbi.2004.04.012

    Article  MathSciNet  Google Scholar 

  • Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28):4996–5003. doi:10.1016/j.biomaterials.2009.05.057

    Article  Google Scholar 

  • Shipley RJ, Waters SL, Ellis MJ (2010) Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors. Biotechnol Bioeng 107(2):382–392. doi:10.1002/bit.22815

    Article  Google Scholar 

  • Shipley RJ, Davidson AJ, Chan K, Chaudhuri JB, Waters SL, Ellis MJ (2011) A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors. Biotechnol Bioeng 108(6):1450–1461. doi:10.1002/bit.23062

    Article  Google Scholar 

  • Shipley RJ, Waters SL (2012) Fluid and mass transport modelling to drive the design of cell-packed hollow fibre bioreactors for tissue engineering applications. Math Med Biol 29:329–359. doi:10.1093/imammb/dqr025

    Article  MathSciNet  MATH  Google Scholar 

  • Tharakan JP, Chau PC (1986) A radial flow hollow fiber bioreactor for the large-scale culture of mammalian cells. Biotechnol Bioeng 28(3):329–342. doi:10.1002/bit.260280305

    Article  Google Scholar 

  • Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14–19

    Article  Google Scholar 

  • Wu C-C, Chao Y-C, Chen C-N, Chien S, Chen Y-C, Chien C-C, Chiu J-J, Yen BL (2008) Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech 41(4):813–821. doi:10.1016/j.jbiomech.2007.11.008

    Article  Google Scholar 

  • Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J (2005) Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol 288(4):H1915–H1924. doi:10.1152/ajpheart.00956.2004

    Article  Google Scholar 

  • Ye H, Das DB, Triffitt JT, Cui Z (2006) Modelling nutrient transport in hollow fibre membrane bioreactors for growing three-dimensional bone tissue. J Membr Sci 272(1–2):169–178. doi:10.1016/j.memsci.2005.07.040

  • Ye H, Xia Z, Ferguson DJP, Triffitt JT, Cui Z (2007) Studies on the use of hollow fibre membrane bioreactors for tissue generation by using rat bone marrow fibroblastic cells and a composite scaffold. J Mater Sci Mater Med 18(4):641–648. doi:10.1007/s10856-007-2314-4

    Article  Google Scholar 

Download references

Acknowledgments

N.C.P. is funded by an Engineering and Physical Sciences Research Council (EPSRC) studentship through the Systems Biology Doctoral Training Centre at the University of Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Waters.

Appendix: Dimensionless equations

Appendix: Dimensionless equations

Following the non-dimensionalisation in Sect. 3.2, we present the dimensionless equations in the remaining layers of the modelling domain. Beginning in the lumen, we have

$$\begin{aligned}&\frac{\partial u_{\mathrm {l}}}{\partial x} + \frac{\partial v_{\mathrm {l}}}{\partial y} = 0,\quad -\frac{\partial p_{\mathrm {l}}}{\partial x} + \varepsilon ^2\frac{\partial ^2 u_{\mathrm {l}}}{\partial x^2} + \frac{\partial ^2 u_{\mathrm {l}}}{\partial y^2} = 0,\nonumber \\&-\frac{\partial p_{\mathrm {l}}}{\partial y} + \varepsilon ^4\frac{\partial ^2 v_{\mathrm {l}}}{\partial x^2} + \varepsilon ^2\frac{\partial ^2 v_{\mathrm {l}}}{\partial y^2} =0,\\&\varepsilon ^2\mathrm {Pe}\left( \lambda \varepsilon \frac{\partial c_{\mathrm {l}}}{\partial t} + \mathbf {\nabla }\cdot (c_{\mathrm {l}}\mathbf {u}_{\mathrm {l}})\right) = \varepsilon ^2\frac{\partial ^2 c_{\mathrm {l}}}{\partial x^2} + \frac{\partial ^2 c_{\mathrm {l}}}{\partial y^2}.\nonumber \end{aligned}$$
(6.1)

In the porous membrane, the dimensionless equations are

$$\begin{aligned}&u_{\mathrm {m}} = -\varepsilon ^2 \kappa _{\mathrm {m}}\frac{\partial p_{\mathrm {m}}}{\partial x},\quad v_{\mathrm {m}} = -\kappa _{\mathrm {m}}\frac{\partial p_{\mathrm {m}}}{\partial y},\nonumber \\&\quad \varepsilon ^2 \frac{\partial ^2 p_{\mathrm {m}}}{\partial x^2} + \frac{\partial ^2 p_{\mathrm {m}}}{\partial y^2} = 0,\\&\lambda \varepsilon ^3\mathrm {Pe}\left( \frac{\partial c_{\mathrm {m}}}{\partial t} + \mathbf {\nabla }\cdot (c_{\mathrm {m}}\mathbf {u}_{\mathrm {m}})\right) = \varepsilon ^2\frac{\partial ^2 c_{\mathrm {m}}}{\partial x^2} + \frac{\partial ^2 c_{\mathrm {m}}}{\partial y^2},\nonumber \end{aligned}$$
(6.2)

where \(\kappa = k/(\lambda \varepsilon ^5 L^2)\) is the \(\text {O}(1)\) dimensionless permeability (see Table 3). Finally, in the 4-layer model the upper fluid layer equations are

$$\begin{aligned}&\frac{\partial u_{\mathrm {f}}}{\partial x} + \frac{\partial v_{\mathrm {f}}}{\partial y} = 0,\quad -\frac{\partial p_{\mathrm {f}}}{\partial x} + \varepsilon ^2\frac{\partial ^2 u_{\mathrm {f}}}{\partial x^2} + \frac{\partial ^2 u_{\mathrm {f}}}{\partial y^2} = 0,\nonumber \\&\quad -\frac{\partial p_{\mathrm {f}}}{\partial y} + \varepsilon ^4\frac{\partial ^2 v_{\mathrm {f}}}{\partial x^2} + \varepsilon ^2\frac{\partial ^2 v_{\mathrm {f}}}{\partial y^2} =0,\\&\varepsilon ^2\mathrm {Pe}\left( \lambda \varepsilon \frac{\partial c_{\mathrm {f}}}{\partial t} + \mathbf {\nabla }\cdot (c_{\mathrm {f}}\mathbf {u}_{\mathrm {f}})\right) = \varepsilon ^2\frac{\partial ^2 c_{\mathrm {f}}}{\partial x^2} + \frac{\partial ^2 c_{\mathrm {f}}}{\partial y^2}.\nonumber \end{aligned}$$
(6.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, N.C., Oliver, J.M., Shipley, R.J. et al. A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption. Biomech Model Mechanobiol 15, 683–700 (2016). https://doi.org/10.1007/s10237-015-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0717-6

Keywords

Navigation