Skip to main content
Log in

Modeling of cell adhesion and deformation mediated by receptor–ligand interactions

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The current work is devoted to studying adhesion and deformation of biological cells mediated by receptors and ligands in order to enhance the existing models. Due to the sufficient in-plane continuity and fluidity of the phospholipid molecules, an isotropic continuum fluid membrane is proposed for modeling the cell membrane. The developed constitutive model accounts for the influence of the presence of receptors on the deformation and adhesion of the cell membrane through the introduction of spontaneous area dilation. Motivated by physics, a nonlinear receptor–ligand binding force is introduced based on charge-induced dipole interaction. Diffusion of the receptors on the membrane is governed by the receptor–ligand interaction via Fick’s Law and receptor-ligand interaction. The developed model is then applied to study the deformation and adhesion of a biological cell. The proposed model is used to study the role of the material, binding, spontaneous area dilation and environmental properties on the deformation and adhesion of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Ambrosi D, Preziosi L (2009) Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech Model Mechanobiol 8(5):397–413

    Article  Google Scholar 

  • Antman S (1995) Nonlinear problems of elasticity. Spriger, New York

    Book  MATH  Google Scholar 

  • Bayas M, Schulten K, Leckban D (2003) Forced detachment of the cd2–cd58 complex. Biophys J 84(4):2223–2233

    Article  Google Scholar 

  • Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  Google Scholar 

  • Bell G, Dembo M, Bongrand P (1984) Cell adhesion competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064

    Article  Google Scholar 

  • Boal D (2002) Mechanics of the cell. Cambridge University, Cambridge

    Google Scholar 

  • Cheng Q, Liu P, Gao H, Zhang Y (2009) A computational modeling for micropipette-manipulated cell detachment from a substrate mediated by receptor–ligand binding. J Mech Phys Solids 57:205–220

    Article  Google Scholar 

  • Ciarlet P (2005) An introduction to differential geometry with applications to elasticity. Springer, Dordrecht

    MATH  Google Scholar 

  • Evans E (1973) New membrane concept applied to the analysis of fluid shear and micropipette-deformed red blood cells. Biophys J 13(9):941–954

    Article  Google Scholar 

  • Evans E (1980) Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J 30(2):265–284

    Article  Google Scholar 

  • Evans E (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J 43(1):27–30

    Article  Google Scholar 

  • Evans E (1985) Detailed mechanics of membrane–membrane adhesion and separation. i. Continuum of molecular cross-bridges. Biophys J 48(1):175–183

    Article  Google Scholar 

  • Evans E, Fung Y (1972) Improved measurments of the erythrocyte geometry. Microvasc Res 4(4):335–347

    Article  Google Scholar 

  • Evans E, LaCelle P (1975) Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 45(1):29–43

    Google Scholar 

  • Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91(16):4219–4228

    Article  Google Scholar 

  • Evans E, Parsegian V (1983) Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci 416:13–33

    Article  Google Scholar 

  • Evans E, Rawics W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64(17):2094–2097

    Article  Google Scholar 

  • Evans E, Rawics W (1997) Elasticity of fuzzy biomembranes. Phys Rev Lett 79(12):2379–2382

    Article  Google Scholar 

  • Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Florida

    Google Scholar 

  • Evans E, Waugh R (1977) Osmatic correction to elastic area compressibility measurements on red cell membrane. Biophys J 20(3):307–313

    Article  Google Scholar 

  • Evans E, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595

    Article  Google Scholar 

  • Fung Y (1966) Theoretical considerations of the elasticity of red cells and small blood vessels. Federation Proc 25(6):1761–1772

    MathSciNet  Google Scholar 

  • Fung Y (1993) Biomechanics, mechanical properties of living tissues, 2nd edn. Spriger, New York

    Google Scholar 

  • Gao H, Shi W, Freund L (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474

    Article  Google Scholar 

  • Green A, Zerna W (1992) Theoretical elasticity, 2nd edn. Dover, New York

    MATH  Google Scholar 

  • Hanley W, McCarty O, Jadhav S, Tseng Y, Wirtz D, Konstantopoulos K (2003) Single molecule characterization of p-selectin/ligand binding. J Biol Chem 278(12):10556–10561

    Article  Google Scholar 

  • Hirata H, Ohki K, Miyata H (2005) Mobility of integrin 51 measured on the isolated ventral membranes of human skin fibroblasts. Biochim Biophys Acta 1723(1–3):100–105

    Article  Google Scholar 

  • Hochmuth R, Mohandas N (1972) Uniaxial loading of the red cell membrane. J Biomech 5(5):501–504

    Article  Google Scholar 

  • Hochmuth R, Mohandas N, Blackshear J (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J 13(8):747–762

    Article  Google Scholar 

  • Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  • Lipowsky R (1991) The conformation of membranes. Nature 349:475–481

    Article  Google Scholar 

  • Liu P, Zhang Y, Cheng Q, Lu C (2007) Simulations of the spreading of a vesicle on a substrate surface mediated by receptor–ligand binding. J Mech Phys Solids 55(6):1166–1181

    Article  MATH  Google Scholar 

  • Marsden J, Hughes T (1983) Mathematical foundations of elasticity. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  • Martinez E, Lanir Y, Einav S (2004) Effects of contact-induced membrane stiffening on platelet adhesion. Biomech Model Mechanobiol 2(3):157–167

    Article  Google Scholar 

  • Nadler B (2010) On the contact of a spherical membrane enclosing a fluid with rigid parallel planes. Int J Non-Linear Mech 45(3):294–300

    Article  Google Scholar 

  • Nadler B, Tang T (2008) Decohesion of a rigid punch from non-linear membrane undergoing finite axisymmetric deformation. Int J Non-Linear Mech 43(8):716–721

    Article  MATH  Google Scholar 

  • Ogden R (1997) Nonlinear elastic deformations. Dover, Mineola

    MATH  Google Scholar 

  • Rand R (1964) Mechanical properties of the red blood cell membrane ii. Viscoelastic breakdown of the membrane. Biophys J 4(4):303–316

    Article  Google Scholar 

  • Shenoy V, Freund L (2005) Growth and shape stability of a biological membrane adhesion complex in the diffusion-mediated regime. Proc Natl Acad Sci USA 102(9):3213–3218

    Article  Google Scholar 

  • Shoemaker S, Vanderlick T (2002) Intramembrane electrostatic interactions destabilize lipid vesicles. Biophys J 83:2007–2014

    Article  Google Scholar 

  • Singer S, Nicolson G (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  Google Scholar 

  • Skalak R (1973) Modeling the mechanical behavior of red blood cells. Biorheology 10:229–238

  • Sohail T, Tang T, Nadler B (2013) Adhesive contact of the fluid filled membrane driven by electrostatic forces. Int J Solids Struct 50(16–17):2678–2690

    Article  Google Scholar 

  • Zarda P, Chien S, Skalak R (1977) Elastic deformations of red blood cells. J Biomech 10(4):211–221

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Nadler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golestaneh, A.F., Nadler, B. Modeling of cell adhesion and deformation mediated by receptor–ligand interactions. Biomech Model Mechanobiol 15, 371–387 (2016). https://doi.org/10.1007/s10237-015-0694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0694-9

Keywords

Navigation