Skip to main content
Log in

Finite element implementation of a multiscale model of the human lens capsule

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

An axisymmetric finite element implementation of a previously described structural constitutive model for the human lens capsule (Burd in Biomech Model Mechanobiol 8(3):217–231, 2009) is presented. This constitutive model is based on a hyperelastic approach in which the network of collagen IV within the capsule is represented by an irregular hexagonal planar network of hyperelastic bars, embedded in a hyperelastic matrix. The paper gives a detailed specification of the model and the periodic boundary conditions adopted for the network component. Momentum balance equations for the network are derived in variational form. These balance equations are used to develop a nonlinear solution scheme to enable the equilibrium configuration of the network to be computed. The constitutive model is implemented within a macroscopic finite element framework to give a multiscale model of the lens capsule. The possibility of capsule wrinkling is included in the formulation. To achieve this implementation, values of the first and second derivatives of the strain energy density with respect to the in-plane stretch ratios need to be computed at the local, constitutive model, level. Procedures to determine these strain energy derivatives at equilibrium configurations of the network are described. The multiscale model is calibrated against previously published experimental data on isolated inflation and uniaxial stretching of ex vivo human capsule samples. Two independent example lens capsule inflation analyses are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agoram B, Barocas VH (2001) Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J Biomech Eng 123:362–369

    Article  Google Scholar 

  • Burgess SA, Carter DA, Woolley DM (1992) Three-dimensional structure of type IV collagen in the mammalian lens capsule. J Struct Biol 108(1):6–13

    Article  Google Scholar 

  • Barraquer RI, Michael R, Abreu R, Lamarca J, Tresserra F (2006) Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest Ophthalmol Vis Sci 47(5):2053–2060

    Article  Google Scholar 

  • Barsotti R, Ligarò SS (2014) Static response of elastic inflated wrinkled membranes. Comput Mech 53(5):1001–1013

    Article  MathSciNet  MATH  Google Scholar 

  • Belaidi A, Pierscionek BK (2007) Modeling internal stress distributions in the human lens: can opponent theories coexist? J Vis 7(11):1–12

    Article  Google Scholar 

  • Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bron AJ, Tripathi RC, Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit. Chapman Hall, London

    Google Scholar 

  • Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodating lens. Vis Res 42(18):2235–2251

    Article  Google Scholar 

  • Burd HJ (2009) A structural constitutive model for the human lens capsule. Biomech Model Mechanobiol 8(3):217–231

    Article  Google Scholar 

  • Charman WN (2014) Developments in the correction of presbyopia II: surgical approaches. Ophthalmic Physiol Opt 34(4):397–426

    Article  Google Scholar 

  • D’Amore A, Amoroso N, Gottardi R, Hobson C, Carruthers C, Watkins S, Wagner WR and Sacks MS (2014) From single fiber to macro-level mechanics: a structural finite-element model for elastomeric fibrous biomaterials. J Mech Behav Biomed Mater 39:146–161

  • Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88(2):151–164

    Article  Google Scholar 

  • Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47(9):2043–2054

    Article  Google Scholar 

  • Fisher RF (1969) Elastic constants of the human lens capsule. J Physiol 201(1):1–19

    Article  Google Scholar 

  • Fisher RF, Pettet BE (1972) The postnatal growth of the capsule of the human crystalline lens. J Anat 112(2):207–214

    Google Scholar 

  • Hermans EA, Dubbelman M, Van der Heijde GL, Heethaar RM (2006) Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vis Res 46(21):3642–3650

    Article  Google Scholar 

  • Hermans EA, Dubbelman M, Van der Heijde GL, Heethaar RM (2008) Change in the accommodative force on the lens of the human eye with age. Vis Res 48(1):119–126

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, London

    Google Scholar 

  • Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21(3):441–463

    Article  MATH  Google Scholar 

  • Krag S, Andreassen TT (2003) Mechanical properties of the human lens capsule. Prog Retin Eye Res 22(6):749–767

    Article  Google Scholar 

  • Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci 38(2):357–363

    Google Scholar 

  • Ligarò SS, Barsotti R (2008) Equilibrium shapes of inflated inextensible membranes. Int J Solids Struct 45(21):5584–5598

    Article  MATH  Google Scholar 

  • Martin H, Schmidt W, Schmitz KP, Schneider H, Guthoff R, Terwee T (2003) Material properties of the isolated human capsular bag. Curr Asp Hum Accommod II:127–133

    Google Scholar 

  • Oyster CW (1999) The human eye: structure and function. Sinauer, Sunderland, MA

  • Pedrigi RM, David G, Dziezyc J, Humphrey JD (2007) Regional mechanical properties and stress analysis of the human anterior lens capsule. Vis Res 47(13):1781–1789

    Article  Google Scholar 

  • Rosen AM, Denham DB, Fernandez V, Borja D, Ho A, Manns F, Parel JM, Augusteyn RC (2006) In vitro dimensions and curvatures of human lenses. Vis Res 46(6–7):1002–1009

    Article  Google Scholar 

  • Schumacher S, Oberheide U, Fromm M, Ripken T, Ertmer W, Gerten G, Wegener A, Lubatschowski H (2009) Femtosecond laser induced flexibility change of human donor lenses. Vis Res 49(14):1853–1859

  • Seshaiyer P, Humphrey JD (2003) A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues. J Biomech Eng 125(3):363–371

    Article  Google Scholar 

  • Stachs O, Martin H, Behrend D, Schmitz KP, Guthoff R (2006) Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefe’s Arch Clin Exp Ophthalmol 244(7):836–844

    Article  Google Scholar 

  • Stylianopoulos T, Barocas VH (2007a) Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J Biomech Eng 129(4):611–618

    Article  Google Scholar 

  • Stylianopoulos T, Barocas VH (2007b) Volume-averaging theory for the study of the mechanics of collagen networks. Comput Methods Appl Mech Eng 196(31–32):2981–2990

    Article  MathSciNet  MATH  Google Scholar 

  • Verron E, Marckmann G (2003) Inflation of elastomeric circular membranes using network constitutive equations. Int J Non Linear Mech 38(8):1221–1235

    Article  MATH  Google Scholar 

  • Weeber HA, Eckert G, Pechhold W, Van der Heijde GL (2007) Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 245(9):1357–1366

    Article  Google Scholar 

  • Wilde GS, Burd HJ, Judge SJ (2012) Shear modulus data for the human lens determined from a spinning lens test. Exp Eye Res 97(1):36–48

    Article  Google Scholar 

  • Wriggers P, Taylor RL (1990) A fully non-linear axisymmetrical membrane element for rubber-like materials. Eng Comput 7:303–310

    Article  Google Scholar 

  • Ziebarth NM, Manns F, Uhlhorn SR, Venkatraman AS, Parel JM (2005) Noncontact optical measurement of lens capsule thickness in human, monkey, and rabbit postmortem eyes. Invest Ophthalmol Vis Sci 46(5):1690–1697

    Article  Google Scholar 

Download references

Acknowledgments

The mesh for the in situ capsule inflation analysis was generated by GS Wilde. The authors acknowledge the assistance provided by RI Barraquer, S Krag, H Martin and R Michael in providing numerical values of previously published experimental data. RAR gratefully acknowledges funding from the US Army Medical Research and Materiel Command (USAMRMC) grant W81XWH-10-1-1036, the US–UK Fulbright Commission, and the Royal Society International Exchanges Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Burd.

Appendices

Appendix 1: Table of joint coordinates

See Table 4.

Table 4 Initial joint coordinates for the network shown in Fig. 1 \(A_X/L_0 = 6\), \(A_Y/L_0 = 3 \sqrt{3}\)

Appendix 2: Capsule thickness data from Barraquer et al. (2006)

See Table 5 and Fig. 12.

Table 5 Numerical values of capsule thickness data (units \(\upmu \)m) from Fig. 7 of Barraquer et al. (2006)
Fig. 12
figure 12

a Data on lens capsule thickness re-plotted from Fig. 7 of Barraquer et al. (2006). Group A, mean age \(=\) 36 years; Group B, mean age \(=\) 65 years; Group C, mean age \(=\) 92 years. \(R_{d}\) is normalized position, measured along the lens meridian from the anterior pole. Normalized position is determined such that at the anterior pole \(R_d=0\), at the equator \(R_d=100\) and at the posterior pole \(R_d=200\) (see b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burd, H.J., Regueiro, R.A. Finite element implementation of a multiscale model of the human lens capsule. Biomech Model Mechanobiol 14, 1363–1378 (2015). https://doi.org/10.1007/s10237-015-0680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0680-2

Keywords

Navigation