Skip to main content

Advertisement

Log in

Remineralization of mechanical loaded resin–dentin interface: a transitional and synchronized multistep process

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phosphoric acid (PA)-treated samples promoted a generalized increases in relative presence of minerals, crystallinity, ratio of phosphate peaks and a decrease in the gradient of mineral content. The organic component showed, in general terms, an increase in crosslinking. \(\upalpha \)-helices incremented in sine and square waveform loading. In EDTA + SB specimens, the relative mineral concentration incremented when loading in hold, in general. Nonuniform parameters of Bis-GMA and adhesive penetration were encountered in both groups. PA + SB promoted the highest dentin mineralization degree when loading in square, based on the increase in the relative presence of minerals and crystallinity. EDTA + SB produced any advance crystallographic maturity at the interface. High crosslinking parameters and conformational changes in proteins in PA-treated specimens indicated, indirectly, that the first remineralization is intrafibrillar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, Watson TF, Banerjee A, Festy F (2012) Microbiochemical analysis of carious dentin using Raman and fluorescence spectroscopy. Caries Res 46:432–440

    Article  Google Scholar 

  • Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52

    Google Scholar 

  • Balooch M, Habelitz S, Kinney JH, Marshall SJ, Marshall GW (2008) Mechanical properties of mineralized collagen fibrils as influenced by demineralisation. J Struct Biol 162:404–410

    Article  Google Scholar 

  • Cheng PT, Pritzker KP (1983) Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. J Rheumatol 10:769–777

    Google Scholar 

  • Cölfen H (2010) Biomineralization: a crystal-clear view. Nat Mater 9:960–961

    Article  Google Scholar 

  • Daood U, Iqbal K, Nitisusanta LI, Fawzy AS (2013) Effect of chitosan/riboflavin modification on resin/dentin interface: spectroscopic and microscopic investigations. J Biomed Mater Res A 101:1846–1856

    Article  Google Scholar 

  • De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M et al (2005) A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84:118–132

    Article  Google Scholar 

  • Erickson RL (1992) Surface interactions of dentin adhesive materials. Oper Dent Suppl 5:81–94

    Google Scholar 

  • Frankenberger R, Pashley DH, Reich SM, Lohbauer U, Petschelt A, Tay FR (2005) Characterisation of resin-dentine interfaces by compressive cyclic loading. Biomaterials 26:2043–2052

    Article  Google Scholar 

  • Jastrzebska M, Wrzalik R, Kocot A, Zalewska-Rejdak J, Cwalina B (2003) Raman spectroscopic study of glutaraldehyde-stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 14:185–197

    Article  Google Scholar 

  • Karan K, Yao X, Xu C, Wang Y (2009) Chemical profile of the dentin substrate in non-carious cervical lesions. Dent Mater 25:1205–1212

    Article  Google Scholar 

  • Kinney JH, Habelitz S, Marshall SJ, Marshall GW (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82:957–961

    Article  Google Scholar 

  • Koibuchi H, Yasuda N, Nakabayashi N (2001) Bonding to dentin with a self-etching primer: the effect of smear layers. Dent Mater 17: 122–126

    Google Scholar 

  • Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C (2005) Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct 744–747:221–228

    Article  Google Scholar 

  • Marshall GW Jr, Inai N, Wu-Magidi IC, Balooch M, Kinney JH, Tagami J, Marshall SJ (1997) Dentin demineralization: effects of dentin depth, pH and different acids. Dent Mater 13:338–343

    Article  Google Scholar 

  • McAllister TN, Frangos JA (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14:930–936

    Article  Google Scholar 

  • Milly H, Festy F, Watson TF, Thompson I, Banerjee A (2014) Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powders. J Dent 42:158–66

    Article  Google Scholar 

  • Nakabayashi N (1992) The hybrid layer: a resin-dentin composite. Proc Finn Dent Soc 88(Suppl 1):321–329

    Google Scholar 

  • Nishigawa K, Bando E, Nakano M (2001) Quantitative study of bite force during sleep associated bruxism. J Oral Rehabil 28:485–491

    Article  Google Scholar 

  • Noma N, Kakigawa H, Kozono Y, Yokota M (2007) Cementum crack formation by repeated loading in vitro. J Periodontol 78:764–769

    Article  Google Scholar 

  • Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, Hilbers PA, De With G, Sommerdijk NA (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  Google Scholar 

  • Osorio R, Erhardt MC, Pimenta LA, Osorio E, Toledano M (2005) EDTA treatment improves resin-dentin bonds’ resistance to degradation. J Dent Res 84:736–740

    Article  Google Scholar 

  • Osorio R, Osorio E, Cabello I, Toledano M (2014) Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res 48:276–290

    Google Scholar 

  • Posner AS, Blumenthal NC, Boskey AL (1986) Model of aluminum-induced osteomalacia: inhibition of apatite formation and growth. Kidney Int (Suppl) 18:S17–S19

    Google Scholar 

  • Rodrigues TL, Nagatomo KJ, Foster BL, Nociti FH, Somerman MJ (2011) Modulation of phosphate/pyrophosphate metabolism to regenerate the periodontium: a novel in vivo approach. J Periodontol 82:1757–1766

    Google Scholar 

  • Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168

    Article  Google Scholar 

  • Sano H, Yoshikawa T, Pereira PN, Kanemura N, Morigami M, Tagami J, Pashley DH (1999) Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dent Res 78:906–911

    Article  Google Scholar 

  • Sauro S, Mannocci F, Toledano M, Osorio R, Pashley DH, Watson TF (2009) EDTA or H3PO4/NaOCl dentin treatments may increase hybrid layers’ resistance to degradation: a microtensile bond strength and confocal-micropermeability study. J Dent 37:279–288

    Article  Google Scholar 

  • Schwartz AG, Pasteris JD, Genin GM, Daulton TL, Thomopoulos S (2012) Mineral distributions at the developing tendon enthesis. PLoS One 7:e48630

    Article  Google Scholar 

  • Simonsen RJ (1987) The preventive resin restoration: a minimally invasive, nonmetallic restoration. Compendium 8:428–430

    Google Scholar 

  • Toledano M, Osorio E, Aguilera FS, Cabrerizo-Vílchez MA, Osorio R (2012a) Surface analysis of conditioned dentin and resin-dentin bond strength. J Adhes Sci Technol 26:27–40

    Google Scholar 

  • Toledano M, Yamauti M, Ruiz-Requena ME, Osorio R (2012b) A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 40:756–765

    Article  Google Scholar 

  • Toledano M, Cabello I, Vílchez MA, Fernández MA, Osorio R (2013) Surface microanalysis and chemical imaging of early dentin remineralization. Microsc Microanal 25:1–12

    Google Scholar 

  • Toledano M, Osorio E, Aguilera FS, Sauro S, Cabello I, Osorio R (2014a) In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. J Mech Behav Biomed Mater 30:61–74

    Article  Google Scholar 

  • Toledano M, Aguilera FS, Cabello I, Osorio E, Osorio R (2014b) Load cycling enhances bioactivity at the resin-dentine interface. Dent Mater. doi:10.1016/j.dental.2014.02.009

  • Toledano M, Cabello I, Aguilera FS, Osorio E, Osorio R (2014c) Dentin mechano-transduction stimuli are associated with tissue remodeling. Microsc Microanal (in press)

  • Toledano M, Osorio E, Cabello I, Osorio R (2014d) Early dentine remineralisation: morpho-mechanical assessment. J Dent 42:384–394

    Google Scholar 

  • Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL (2011) State of the art of self etch adhesives. Dent Mater 27:17–28

    Article  Google Scholar 

  • Wang Y, Spencer P (2003) Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res 82:141–145

    Article  Google Scholar 

  • Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S, Midura RJ, Gorski JP (2009) Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284:7100–7113

    Article  Google Scholar 

  • Xu C, Wang Y (2011) Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res B Appl Biomater 96:242–248

    Article  Google Scholar 

  • Xu C, Wang Y (2012) Collagen cross linking increases its biodegradation resistance in wet dentin bonding. J Adhes Dent 14:11–18

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants CICYT/ FEDER MAT2011-24551, JA-P08-CTS-3944 and CEI-Biotic UGR. The authors have no financial affiliation or involvement with any commercial organization with direct financial interest in the materials discussed in this manuscript. Any other potential conflict of interest is disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Toledano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledano, M., Aguilera, F.S., Cabello, I. et al. Remineralization of mechanical loaded resin–dentin interface: a transitional and synchronized multistep process. Biomech Model Mechanobiol 13, 1289–1302 (2014). https://doi.org/10.1007/s10237-014-0573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0573-9

Keywords

Navigation