Skip to main content

Advertisement

Log in

Multistatic estimation of high-frequency radar surface currents in the region of Toulon

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The high-frequency radar coastal network in Toulon operates in multistatic mode for the monitoring of the ocean circulation in the Northwestern Mediterranean Sea. With 2 transmitters and 2 receivers on 3 distant sites, it measures 4 different elliptical components of the surface velocity. We provide a methodology for improved current mapping using this augmented number of available projections and we show some typical results obtained during the year 2019. The validity and the quality of the reconstruction are assessed through comparisons with two types of in situ measurements, namely drifters’ velocities from a dedicated campaign and acoustic Doppler current profiler data from an opportunity oceanographic campaign. The results of these assessments confirm the accuracy of these high-frequency radar measurements and their ability to capture the meso- to submeso-scale variability of the near shelf circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. As of January 2020, the receiving array has been upgraded to a regular array of 12 antennas

  2. https://static.gsattrack.com/hardware/manufacturers/albatros-marine-technologies

  3. http://saved.dt.insu.cnrs.fr/

  4. see http://hfradar.univ-tln.fr/HFRADAR/

References

  • Alberola C, Millot C, Font J (1995) On the seasonal and mesoscale variabilities of the northern current during the primo-0 experiment in the western mediterranean-sea. Oceanol Acta 18(2):163–192

    Google Scholar 

  • Ardhuin F, Marié L, Rascle N, Forget P, Roland A (2009) Observation and estimation of lagrangian, stokes, and eulerian currents induced by wind and waves at the sea surface. J Phys Oceanogr 39(11):2820–2838

    Article  Google Scholar 

  • Barrick D (1972a) Remote sensing of sea state by radar. Remote Sensing of the Troposphere 12:1–46

    Google Scholar 

  • Barrick DE (1972b) First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Transactions on Antennas and Propagation 20(1):2–10

    Article  Google Scholar 

  • Baskin C, Roarty H, Kohut J, Glenn S (2016) Effectiveness of a bistatic system on high frequency radar resiliency. In: OCEANS 2016 MTS/IEEE Monterey, pp 1–5. https://doi.org/10.1109/OCEANS.2016.7761296

  • Bellomo L, Griffa A, Cosoli Falco P, Gerin R, Iermano I, A K ZK, Lana A, Magaldi M, Mamoutos I, Mantovani C, Marmain J, Potiris E, Sayol J, Barbin Y, Berta M, Borghini M, Bussani A, Corgnati L, Dagneaux Q, Gaggelli J, Guterman P, Mallarino D, Mazzoldi A, Molcard A, Orfila A, Poulain PM, Quentin C, Tintoré J, Uttieri M, Vetrano A, Zambianchi E, Zervakis V (2015) Toward an integrated HF radar network in the mediterranean sea to improve search and rescue and oil spill response: the TOSCA project experience. Journal of Operational Oceanography 8 (2):95–107. https://doi.org/10.1080/1755876X.2015.1087184

    Article  Google Scholar 

  • Capodici F, Cosoli S, Ciraolo G, Nasello C, Maltese A, Poulainc PM, Drago A, Azzopardi J, Gauci A (2019) Validation of HF radar sea surface currents in the malta-sicily channel. Remote Sens Environ 225:65–76. https://doi.org/10.1016/j.rse.2019.02.026

    Article  Google Scholar 

  • Casella E, Molcard A, Provenzale A (2011) Mesoscale vortices in the ligurian sea and their effect on coastal upwelling processes. J Mar Syst 88(1):12–19

    Article  Google Scholar 

  • Chapman R, Shay LK, Graber HC, Edson J, Karachintsev A, Trump C, Ross D (1997) On the accuracy of hf radar surface current measurements: Intercomparisons with ship-based sensors. Journal of Geophysical Research: Oceans 102(C8):18,737–18,748

    Article  Google Scholar 

  • Crépon M, Richez C (1982) Transient upwelling generated by two-dimensional atmospheric forcing and variability in the coastline. Journal of Physical Oceanography 12(12):1437–1457. https://doi.org/10.1175/1520-0485(1982)012<1437:TUGBTD>2.0.CO;2

    Article  Google Scholar 

  • Davis RE (1985) Drifter observations of coastal surface currents during code: the method and descriptive view. Journal of Geophysical Research: Oceans 90(C3):4741–4755

    Article  Google Scholar 

  • Declerck A, Ourmières Y, Molcard A (2016) Assessment of the coastal dynamics in a nested zoom and feedback on the boundary current: the north-western mediterranean sea case. Ocean Dyn 66 (11):1529–1542

    Article  Google Scholar 

  • Dumas D, Guérin CA (2020) Self-calibration and antenna grouping for bistatic oceanographic high-frequency radars. arXiv:200510528

  • Enrile F, Besio G, Stocchino A, Magaldi M, Mantovani C, Cosoli S, Gerin R, Poulain PM (2018) Evaluation of surface lagrangian transport barriers in the gulf of trieste. Cont Shelf Res 167:125–138

    Article  Google Scholar 

  • Flexas M, Van Heijst G, Jordà G, Sánchez-Arcilla A (2004) Numerical simulation of barotropic jets over a sloping bottom: Comparison to a laboratory model of the northern current. J. Geophys. Res., 109,C 12039. https://doi.org/10.1029/2004JC002286

  • Forget P (2015) Noise properties of HF radar measurement of ocean surface currents. Radio Sci 50(8):764–777

    Article  Google Scholar 

  • Graber HC, Haus BK, Chapman RD, Shay LK (1997) Hf radar comparisons with moored estimates of current speed and direction: Expected differences and implications. Journal of Geophysical Research: Oceans 102(C8):18,749–18,766

    Article  Google Scholar 

  • Grosdidier S, Forget P, Barbin Y, Guérin C A (2014) HF Bistatic ocean Doppler spectra: Simulation versus experimentation. IEEE Trans Geosci and Remote Sens 52(4):2138–2148

    Article  Google Scholar 

  • Guérin C A, Dumas D, Gramoullé A, Quentin C, Saillard M, Molcard A (2019) The multistatic HF radar network in Toulon. In: IEEE Radar 2019, Conference, IEEE

  • Guihou K, Marmain J, Ourmieres Y, Molcard A, Zakardjian B, Forget P (2013) A case study of the mesoscale dynamics in the north-western mediterranean sea: a combined data–model approach. Ocean Dyn 63(7):793–808

    Article  Google Scholar 

  • Gurgel KW, Essen HH, Kingsley S (1999) High-frequency radars: physical limitations and recent developments. Coastal Eng 37(3):201–218

    Article  Google Scholar 

  • Kalampokis A, Uttieri M, Poulain PM, Zambianchi E (2016) Validation of HF radar-derived currents in the gulf of naples with lagrangian data. IEEE Geosci Remote Sens Lett 13(10):1452–1456

    Article  Google Scholar 

  • Kelly F, Bonner J, Perez J, Adams J, Prouty D, Trujillo D, Weisberg RH, Luther ME, He R, Cole R et al (2002) An hf-radar test deployment amidst an adcp array on the west florida shelf. In: OCEANS’02 MTS/IEEE, IEEE, vol 2, pp 692–698

  • Kim S, Terrill E, Cornuelle B (2008) Mapping surface currents from HF radar radial velocity measurements using optimal interpolation. J. Geophys. Res., 113, C10023. https://doi.org/10.1029/2007JC004244

  • Kirincich A, Emery B, Washburn L, Flament P (2019) Improving surface current resolution using direction finding algorithms for multiantenna high-frequency radars. J Atmos Ocean Technol 36(10):1997–2014

    Article  Google Scholar 

  • Lefévre D (2010) Moose(antares), Tech. rep., CNRS-INSU. https://doi.org/10.18142/233

  • Lipa B, Barrick D (1983) Least-squares methods for the extraction of surface currents from codar crossed-loop data: Application at arsloe. IEEE J Ocean Eng 8(4):226–253

    Article  Google Scholar 

  • Lipa B, Whelan C, Rector B, Nyden B (2009) Hf radar bistatic measurement of surface current velocities: drifter comparisons and radar consistency checks. Remote Sens 1(4):1190–1211

    Article  Google Scholar 

  • Lumpkin R, Özgökmen T, Centurioni L (2017) Advances in the application of surface drifters. Annual Review of Marine Science 9:59–81

    Article  Google Scholar 

  • Marmain J, Forget P, Molcard A (2011) Characterization of ocean surface current properties from single site HF/VHF radar. Ocean Dyn 61(11):1967–1979

    Article  Google Scholar 

  • Marmain J, Molcard A, Forget A, Barth A, Ourmières Y (2014) Assimilation of HF radar surface currents to optimize forcing in the northwestern Mediterranean sea. Nonlinear Process Geophys 21 (3):659–675

    Article  Google Scholar 

  • Millot C (1991) Mesoscale and seasonal variabilities of the circulation in the western mediterranean. Dynamics of Atmospheres and Oceans 15(3-5):179–214

    Article  Google Scholar 

  • Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean sea. In: The Mediterranean Sea, Springer, pp 29–66

  • Molcard A, Poulain P, Forget P, Griffa A, Barbin Y, Gaggelli J, De Maistre J, Rixen M (2009) Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea). J Mar Syst 78:S79–S89. https://doi.org/10.1016/j.jmarsys.2009.01.012

    Article  Google Scholar 

  • Morey S, Wienders N, Dukhovskoy D, Bourassa M (2018) Measurement characteristics of near-surface currents from ultra-thin drifters, drogued drifters, and HF radar. Remote Sens 10(10):1633

    Article  Google Scholar 

  • Novelli G, Guigand C, Cousin C, Ryan E, Laxage J, Dai H, Haus K, Özgökmen T (2017) A biodegradable surface drifter for ocean sampling on a massive scale. J Atmos Oceanic Technol 34:2509–2532. https://doi.org/10.1175/JTECH-D-17-0055.1

    Article  Google Scholar 

  • Novelli G, Guigand C, Özgökmen T (2018) Technological advances in drifters for oil transport studies. Mar Technol Soc J 52(6):53–61

    Article  Google Scholar 

  • Ohlmann C et al (2007) Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J Atmos Ocean Technol 24(4):666–680

    Article  Google Scholar 

  • Özgökmen T, Boufadel M, Carlson D, Cousin C, Guigand C, Haus B, Horstmann J, Lund B, Molemaker J, Novelli G (2018) Technological advances for ocean surface measurements by the consortium for advanced research on transport of hydrocarbons in the environment (carthe). Mar Technol Soc J 52 (6):71–76

    Article  Google Scholar 

  • Paduan JD, Rosenfeld LK (1996) Remotely sensed surface currents in monterey bay from shore-based hf radar (coastal ocean dynamics application radar). Journal of Geophysical Research: Oceans 101 (C9):20,669–20,686

    Article  Google Scholar 

  • Paduan JD, Washburn L (2013) High-frequency radar observations of ocean surface currents. Annual Review of Marine Science 5:115–136

    Article  Google Scholar 

  • Paduan JD, Kim KC, Cook MS, Chavez FP (2006) Calibration and validation of direction-finding high-frequency radar ocean surface current observations. IEEE J Ocean Eng 31(4):862–875

    Article  Google Scholar 

  • Piterbarg L, Taillandier V, Griffa A (2014) Investigating frontal variability from repeated glider transects in the ligurian current (north west mediterranean sea). J Mar Syst 129:381–395

    Article  Google Scholar 

  • Quentin C, Barbin Y, Bellomo L, Forget P, Gagelli J, Grosdidier S, Guérin CA, Guihou K, Marmain J, Molcard A, Zakardjian B, Guterman P, Bernardet K (2013) HF radar in French Mediterranean Sea: an element of MOOSE Mediterranean Ocean Observing System on Environment. In: Ocean & Coastal Observation: Sensors ans observing systems, numerical models & information, Nice, France, pp 25–30. https://hal.archives-ouvertes.fr/hal-00906439

  • Roarty H, Cook T, Hazard L, Harlan J, Cosoli S, Wyatt L, Alvarez Fanjul E, Terrill E, Otero M, Largier J et al (2019) The global high frequency radar network. Frontiers in Marine Science 6:164

    Article  Google Scholar 

  • Robinson A, Wyatt L, Howarth M (2011) A two year comparison between hf radar and adcp current measurements in liverpool bay. Journal of Operational Oceanography 4(1):33–45

    Article  Google Scholar 

  • Röhrs J, Sperrevik AK, Christensen KH, Broström G, Breivik Ø (2015) Comparison of hf radar measurements with eulerian and lagrangian surface currents. Ocean Dyn 65(5):679–690

    Article  Google Scholar 

  • Rypina I, Kirincich A, Limeburner R, Udovydchenkov I (2014) Eulerian and lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J Atmos Ocean Technol 31:945–966. https://doi.org/10.1175/JTECH-D-13-00146.1

    Article  Google Scholar 

  • Sammari C, Millot C, Prieur L (1995) Aspects of the seasonal and mesoscale variabilities of the northern current in the western mediterranean sea inferred from the prolig-2 and pros-6 experiments. Deep Sea Research Part I:, Oceanographic Research Papers 42(6):893–917

    Article  Google Scholar 

  • Sentchev A, Forget P, Fraunié P (2017) Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, adcp and drifter measurements. Ocean Dyn 67(3-4):499–512

    Article  Google Scholar 

  • Shadden S, Lekien F, Paduan J, Chavez F, Marsden JE (2009) The correlation between surface drifters and coherent structures based on high-frequency radar data in monterey bay. Deep Sea Research Part II: Topical Studies in Oceanography 56(3-5):161–172

    Article  Google Scholar 

  • Stewart RH, Joy JW (1974) HF Radio measurements of surface currents. In: Deep sea research and oceanographic abstracts, Vol 21, Elsevier, pp 1039–1049

  • Taupier-Letage I, Millot C (1986) General hydrodynamical features in the ligurian sea inferred from the dyome experiment. Oceanol Acta 9(2):119–131

    Google Scholar 

  • Whelan C, Hubbard M (2015) Benefits of multi-static on HF radar networks. In: OCEANS 2015-MTS/IEEE Washington, IEEE, pp 1–5

  • Yang J, Wang R, Shi Y, Xu X, Li S, Wang C, Zhou H, Wen B, Wu S (2014) Dual-use multistatic HF ocean radar for current mapping and ship tracking. IEICE Electronics Express, pp 11–20140, 281

  • Yoshikawa Y, Matsuno T, Marubayashi K, Fukudome K (2007) A surface velocity spiral observed with adcp and hf radar in the tsushima strait. J. Geophys. Res., 112, C1002. https://doi.org/10.1029/2006JC003625

Download references

Acknowledgements

The upgrade of the WERA HFR system in Toulon as well as one of the authors (Anthony Gramoullé) have been funded by the EU Interreg Marittimo program SICOMAR-PLUS; the drifters have been acquired in the framework of the EU Interreg Marittimo program IMPACT; the operational maintenance of the installations has been contracted to the Degréane Horizon company over the period 2019-2021. We acknowledge the University of Toulon and the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation for funding the first author. The long-term monitoring of the Northern Current is part of the Mediterranean Ocean Observation Service for the Environment (MOOSE). We thank the Parc National de Port-Cros (PNPC) for its support and hosting of our radar transmitter in Porquerolles Island. We also thank the “Association Syndicale des Propriétaires du Cap Bénat” (ASPCB) for allowing our receiver array at the Cap Bénat as well as the Group Military Conservation and the Marine Nationale for hosting our radar installation in Fort Peyras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Antoine Guérin.

Additional information

Responsible Editor: Alejandro Orfila

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumas, D., Gramoullé, A., Guérin, CA. et al. Multistatic estimation of high-frequency radar surface currents in the region of Toulon. Ocean Dynamics 70, 1485–1503 (2020). https://doi.org/10.1007/s10236-020-01406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01406-z

Keywords

Navigation