Skip to main content
Log in

Tidal impacts on downstream hydraulic geometry of a tide-influenced delta

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Variations in river hydraulic geometry (HG) are of fundamental importance to fluvial geomorphological research and catchment management. In tide-influenced river deltas, channel geometry displays a mixed scaling behavior since the channel forming discharge is of both tidal and river origins. This study aims to map the tidal signature on delta morphology in the Pearl River Delta (PRD) channel network. The model results of a 2D numerical model are used to analyze the spatial variations of river and tidal discharges and their relations with representative channel geometry throughout the delta. Downstream HG of the distributary channels in the PRD features distinct characteristics in three zones. The transition points in morphology, which splits the delta into river- and tide-dominated parts, coincide with those in the mean flow velocity, the ratio of maximum tidal discharge amplitude (MTDA) to fluvial discharge. The ratio of MTDA to river discharge scales with bifurcation order. The water level setup created by non-linear tidal and fluvial interactions affects the discharge division at tidal bifurcations. In general, the net tidal impact is to attenuate the inequality in discharge division in the PRD. The tide is non-negligible in the cross-sectional morphology and plays a decisive role in the formation of the river channel in the seaward portion of the delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen JI, Somerfield PJ, Gilbert FJ (2007) Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst 64:3–14. https://doi.org/10.1016/j.jmarsys.2006.02.010

    Article  Google Scholar 

  • Beaufort A, Moatar F, Curie F, Ducharne A, Bustillo V, Thiéry D (2016) River temperature modelling by Strahler order at the regional scale in the Loire river basin, France. River Res Appl 32:597–609. https://doi.org/10.1002/rra.2888

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484. https://doi.org/10.1029/1999GL006047

    Article  Google Scholar 

  • Buschman FA, Hoitink AJF, Van Der Vegt M, et al (2009) Subtidal water level variation controlled by river flow and tides. Water Resources Research 45(10): W10420, 1–12

  • Buschman F A, Hoitink A J F, Van Der Vegt M, et al (2010) Subtidal flow division at a shallow tidal junction. Water Resources Research 46(12): W12515, 1–12

  • Chen XH, Chen YQ (2002) Hydrological change and its causes in the river network of the Pearl River Delta. J Geogr Sci 57:430–436 (in Chinese)

    Google Scholar 

  • Chen X, Zhang W, Zhao H, Xu H, Yi W (2010) Spatio-temporal characteristics and effects of shoreline evolution of the Pearl River estuary in the past thirty years. Trop Geogr 30(6):591–596 (in Chinese)

    Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014. https://doi.org/10.1029/2000GL012471

    Article  Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A (2010) On the tidal prism-channel area relations. J Geophys Res 115:F01003. https://doi.org/10.1029/2008JF001243

    Article  Google Scholar 

  • Davies G, Woodroffe CD (2010) Tidal estuary width convergence: theory and form in north Australian estuaries. Earth Surf Process Landf 35(7):737–749

    Google Scholar 

  • Dodov B, Foufoula-Georgiou E (2004) Generalized hydraulic geometry: insights based on fluvial instability analysis and a physical model. Water Resour Res 40:W12201. https://doi.org/10.1029/2004WR003196

    Article  Google Scholar 

  • Dupas R, Curie F, Gascuel-Odoux C, Moatar F, Delmas M, Parnaudeau V, Durand P (2013) Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 443:152–162. https://doi.org/10.1016/j.scitotenv.2012.10.011

    Article  Google Scholar 

  • Edmonds DA, Slingerland RL (2007) Mechanics of river mouth bar formation: implications for the morphodynamics of delta distributary network. J Geophys Res 112(F02034):1–16

    Google Scholar 

  • Fagherazzi S, Furbish DJ (2001) On the shape and widening of salt marsh creeks. J Geophys Res 106(C1):991–1003. https://doi.org/10.1029/1999JC000115

    Article  Google Scholar 

  • Friedrichs CT (1995) Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels. J Coastal Res 11(4):1062–1074

    Google Scholar 

  • Godin G (1985) Modifification of river tides by the discharge. Journal of Waterway, Port, Coastal, and Ocean Engineering 111(2):257–274. https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(257)

    Article  Google Scholar 

  • Goodwin P (2004) Analytical solutions for estimating effective discharge. J Hydraul Eng 130:729–738. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(729)

    Article  Google Scholar 

  • Hogrefe C et al (2004) Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J Geophys Res 109:D22301. https://doi.org/10.1029/2004JD004690

    Article  Google Scholar 

  • Hoitink AJF, Wang ZB, Vermeulen B, Huismans Y, Kästner K (2017) Tidal controls on river delta morphology. Nat Geosci 10:637–645

    Article  Google Scholar 

  • Jay DA (1997) Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J. Geophys. Res. 102(C3): 5705–5720. 10.1 029/96JC00496

  • Ji X, Zhang W (2019) Tidal influence on the discharge distribution over the Pearl River Delta, China. Reg Stud Mar Sci 31:100791

    Article  Google Scholar 

  • Ji X, Sheng J, Tang L, Liu D, Yang X (2011) Process study of circulation in the Pearl River Estuary and adjacent coastal waters in the wet season using a triply-nested circulation model. Ocean Model 28:138–160. https://doi.org/10.1016/j.ocemod.2011.02.010

    Article  Google Scholar 

  • Jia L, Yang Q, Haiqiang Q, Luo X, Luo Z, Yang G (2002) Variations in At-a-Station hydraulic geometry of the Pearl River Delta in recent decades. Sci Geogr Sin 22(1):57–62

    Google Scholar 

  • Lamouroux N, Hauer C, Stewardson MJ, LeRoy Poff N (2017) Chapter 13–physical habitat modeling and ecohydrological tools. In: Horne AC, Webb JA, Stewardson MJ, Richter B, Acreman M (Eds.), Water for the Environment. Academic Press, pp. 265–285. https://doi.org/10.1016/B978-0-12-803907-6.00013-9

  • Langbein WB (1963) The hydraulic geometry of a shallow estuary. Bulletin-International Association of Scientifific Hydrology 8(3):84–94. https://doi.org/10.1080/02626666309493340

    Article  Google Scholar 

  • Lanzoni S, G Seminara (1998) On tide propagation in convergent estuaries, J. Geophys. Res. 103(C13): 30, 793–30, 812. https://doi.org/10.1029/1998JC900015

  • Lee JS, Julien PY (2006) Downstream hydraulic geometry of alluvial channels. J Hydraul Eng 132:1347–1352. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1347)

    Article  Google Scholar 

  • Leopold LB, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. U S Geol Surv Prof Pap 252:1–58

    Google Scholar 

  • Lu XX, Zhang SR, Xie SP, Ma PK (2007) Rapid channel incision of the lower Pearl River (China) since the 1990s. Hydrol Earth Syst Sci Discuss 4:2205–2227

    Article  Google Scholar 

  • Luo XL, Zeng EY, Ji RY, Wang CP (2007) Effects of in-channel sand excavation on the hydrology of the Pearl River Delta, China. J Hydrol 343:230–239

    Article  Google Scholar 

  • Maddock I (1999) The importance of physical habitat assessment for evaluating river health. Freshw Biol 41:373–391. https://doi.org/10.1046/j.1365-2427.1999.00437.x

    Article  Google Scholar 

  • Mao Q, Shi P, Yin K, Gan J, Qi Y (2004) Tides and tidal currents in the Pearl River Estuary. Cont Shelf Res 24(16):1797–1808

    Article  Google Scholar 

  • Maréchal D (2004) A soil-based approach to rainfall-runoff modelling in ungauged catchments for England and Wales (Ph.D. thesis). Cranfield University

  • Miguel C, Lamouroux N, Pella H, Labarthe B, Flipo N, Akopian M, Belliard J (2016) Altération d’habitat hydraulique à l’échelle des bassins versants: impacts des prélèvements en nappe du bassin Seine-Normandie. Houille Blanche:65–74 (in French). https://doi.org/10.1051/lhb/2016032

  • Myrick RM and LB Leopold (1963) Hydraulic geometry of a small tidal estuary. U.S. Dept. Int., Geol. Surv. Prof. Pap. 422–B: 1–18

  • Nienhuis JH, Hoitink AJF, Törnqvist TE (2018) Future change to tide-influenced deltas Geophysical Research Letters 45. https://doi.org/10.1029/2018GL077638

  • Pearl River Water Resources Commission (1991) Pearl River records, Volume III. Guangdong Province Science and Technology Press, Guangzhou, China, 256 pp (in Chinese)

  • Rinaldo A, Fagherazzi S, Lanzoni S, Marani M, Dietrich WE (1999) Tidal networks: 3. Landscape-forming discharges and studies in empirical geomorphic relationships. Water Resour Res 35(12):3919–3929

    Article  Google Scholar 

  • Sassi MG and AJF Hoitink (2013) River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. J Geophys Res Oceans 118: 4139–4151. https://doi.org/10.1002/jgrc.20297

  • Sassi MG, Hoitink AJF, de Brye B, Vermeulen B, Deleersnijder E (2011) Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn 61(12):2211–2228

    Article  Google Scholar 

  • Sassi MG, Hoitink AJF, de Brye B, Deleersnijder E (2012) Downstream hydraulic geometry of a tidally influenced river delta. J Geophys Res 117:F04022. https://doi.org/10.1029/2012JF002448

    Article  Google Scholar 

  • Savenije HHG (2012) Salinity and tides in alluvial estuaries, 2nd edn. Elsevier, New York

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations, part 1, basic experiment. Monthly Weather Review 91:99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  • Snelder T, Booker D, Lamouroux N (2011) A method to assess and define environmental flow rules for large jurisdictional regions. J Am Water Resour Assoc 47:828–840. https://doi.org/10.1111/j.1752-1688.2011.00556.x

    Article  Google Scholar 

  • Statzner B, Gore JA, Resh VH (1988) Hydraulic stream ecology: observed patterns and potential applications. J North Am Benthol Soc 7:307–360. https://doi.org/10.2307/1467296

    Article  Google Scholar 

  • Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50(4):2107–2115

    Article  Google Scholar 

  • Stewardson MJ, Datry T, Lamouroux N, Pell H, Thommeret N, Valette L, Grant SB (2016) Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology 259(15):70–80

    Article  Google Scholar 

  • Syvitski JPM, Saito Y (2007) Morphodynamics of deltas under the influence of humans. Glob Planet Chang 57(3):261–282

    Article  Google Scholar 

  • Torma C, Giorgi F (2014) Assessing the contribution of different factors in regional climate model projections using the factor separation method. Atmos Sci Lett 15:239–244. https://doi.org/10.1002/asl2.491

    Article  Google Scholar 

  • van den Heever SC, Carrio GG, Cotton WR, DeMott PJ, Prenni AJ (2006) Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J Atmos Sci 63:1752–1775. https://doi.org/10.1175/JAS3713.1

    Article  Google Scholar 

  • Williams PB, Orr MK, Garrity NJ (2002) Hydraulic geometry: a geomorphic design tool for tidal marsh channel evolution in wetland restoration projects. Restor Ecol 10(3):577–590

    Article  Google Scholar 

  • Wright LD, Coleman JM, Thom BG (1973) Processes of channel development in a high-tide-range environment: Cambridge Gulf-Ord River Delta, Western Australia. J Geol 81(1):15–41. https://doi.org/10.1086/627805

    Article  Google Scholar 

  • Yuan R, Zhu J (2015) The effects of dredging on tidal range and saltwater intrusion in the Pearl River estuary. J Coast Res 31(6):1357–1362

    Article  Google Scholar 

  • Zhang W, Xiaohong R, Zheng J, Zhu Y, Wu H (2010) Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology 120(3–4):209–223

    Article  Google Scholar 

  • Zhang W, Wang W, Zheng J, Wang H, Wang G, Zhang J (2015) Reconstruction of stage-discharge relationships and analysis of hydraulic geometry variations: the case study of the Pearl River Delta, China. Glob Planet Chang 125:60–70

    Article  Google Scholar 

  • Zhang W, Feng HC, Hoitink AJF, Zhu YL, Gong F, Zheng JH (2017) Tidal impacts on the subtidal flow division at the main bifurcation in the Yangtze River Delta. Estuar. Coast Shelf Sci. 196: 301–314. /https://doi.org/10.1016/j.ecss.2017.07.008

  • Zhao HT (1990) Evolution of the Pearl River Estuary. Chinese Ocean Press, Beijing, p 357 (in Chinese)

    Google Scholar 

Download references

Funding

This work was jointly supported by “National Key R&D Program of China” (No. 2017YFC0405900), “National Natural Science Foundation of China” (NSFC, Nos. 41506100, 41676078), and “the Fundamental Research Funds for the Central Universities, China” (No. 2018B13114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

Responsible Editor: Emil Vassilev Stanev

This article is part of the Topical Collection on the 11th International Workshop on Modeling the Ocean (IWMO), Wuxi, China, 17–20 June 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Zhang, W. Tidal impacts on downstream hydraulic geometry of a tide-influenced delta. Ocean Dynamics 70, 1239–1252 (2020). https://doi.org/10.1007/s10236-020-01391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01391-3

Keywords

Navigation