Skip to main content
Log in

Numerical modeling of hydrodynamics and sediment transport—an integrated approach

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Point measurement-based estimation of bedload transport in the coastal zone is very difficult. The only way to assess the magnitude and direction of bedload transport in larger areas, particularly those characterized by complex bottom topography and hydrodynamics, is to use a holistic approach. This requires modeling of waves, currents, and the critical bed shear stress and bedload transport magnitude, with a due consideration to the realistic bathymetry and distribution of surface sediment types. Such a holistic approach is presented in this paper which describes modeling of bedload transport in the Gulf of Gdańsk. Extreme storm conditions defined based on 138-year NOAA data were assumed. The SWAN model (Booij et al. 1999) was used to define wind–wave fields, whereas wave-induced currents were calculated using the Kołodko and Gic-Grusza (2015) model, and the magnitude of bedload transport was estimated using the modified Meyer-Peter and Müller (1948) formula. The calculations were performed using a GIS model. The results obtained are innovative. The approach presented appears to be a valuable source of information on bedload transport in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad MF, Siang AY (2013) Modelling of hydrodynamics and sediment transport at Pentai Tok Jembal, Kuala Terengganu Mengabang Telipot, Terengganu, using MIKE 21. In: Olanrewaju OS, Saharuddin AH, Kader AS, Wan Nik W (ed) Marine technology and sustainable development: green innovations. Advances in Environmental Engineering and Green Technologies, IGI Global, pp 326.doi:10.4018/978-1-4666-4317-8.ch007

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. JGR 104(C4):7649–7666

    Article  Google Scholar 

  • Chechko V, Sokolov A, Chubarenko B, Dikii D, Topchaya V (2015) Dynamics of sediments disposed in the marine coastal zone near the Vistula Lagoon inlet, south-eastern part of the Baltic Sea. Baltica 28(2):189–199. doi:10.5200/baltica.2015.28.16

    Article  Google Scholar 

  • Chen J-L, Shi F, Hsu T-J, Kirby JT (2014) NearCoM-TVD—a quasi-3D nearshore circulation and sediment transport model. Coast Eng 91:200–212

    Article  Google Scholar 

  • Chubarenko B, Babakov A (2016) Sediment transport near the Vistula spit (Baltic Sea) http://cofore.Coastdyn.Ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/Chubarenko%20Boris.pdf. Accessed 14 Dec 2016

  • Cieślikiewicz W, Dudkowska A, Gic-Grusza G (2016) Port of Gdansk and port of Gdynia’s exposure to threats resulting from storm extremes. JPSRA 7(1):29–36

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Bronnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross T, Trigo R, Wang X, Woodruff SD, Worley S (2011) Review article–the twentieth century reanalysis project. Q J Roy Meteor Soc 137:1–28

    Article  Google Scholar 

  • Du Boys P (1879) Le Rhone et les rivieres a lit affouillable. Annales des Ponts et Chaussées 18:141–195

    Google Scholar 

  • Dudkowska A, Gic-Grusza G (2017) Wave-induced bedload transport—southern Baltic coastal zone study. Andean Geol 23(1):1–14. doi:10.1515/logos-2017-0001

    Google Scholar 

  • Emelyanov EM (2002) Geology of the Gdansk Basin, Baltic Sea. Yantarny. Skaz, Kaliningrad, p 496

    Google Scholar 

  • Gic-Grusza G, Dudkowska A (2014) Modeling of wind wave induced sediment transport in the coastal zone of polish marine areas (southern Baltic). Baltic International Symposium (BALTIC), 2014 IEEE/OES. doi:10.1109/BALTIC.2014.6887860

  • Gic-Grusza G, Kołodko J (2017) Three-dimensional wave-induced current field: analytical model. [submitted to J Fluid Mech]

  • Gołębiewski R, Musielak S (1978) Rozmieszczenie wybranych elementów geochemicznychw powierzchniowych osadach dennych Małej Zatoki Puckiej. Studia i materiały Oceanologiczne 25:327–354

    Google Scholar 

  • Gonzalez-Rodriguez D, Madsen OS (2007) Seabed shear stress and bedload transport due to asymmetric and skewed waves. Coast Eng 54:914–929

    Article  Google Scholar 

  • Harff J, Furmanczyk K, Von Storch H (Eds.) (2017) Coastline Changes of the Baltic Sea from South to East. Coastal Research Library 19, Springer International Publishing, 388

  • Huzarska K (2013) Spatial distribution of biological and physical sediment parameters in the western Gulf of Gdańsk. Oceanologia 55(2):453–470. doi:10.5697/oc.55-2.453

    Article  Google Scholar 

  • Jankowska H, Łęczyński L (1993) Osady denne. In: Korzeniewski K (ed) Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, pp 320–327

    Google Scholar 

  • Kaczmarek LM, Ostrowski R, Szmytkiewicz M (2010) Sediment transport issues related to a planned cross-cut through the Vistula Spit, Poland. AHEM 57(2):119–137

    Google Scholar 

  • Kołodko J, Gic-Grusza G (2015) A note on the vertical distribution of momentum transport in water waves. Oceanol Hydrobiol Stud 44(4):563–568. doi:10.1515/ohs-2015-0053

    Google Scholar 

  • Kowalik Z (1990) Currents. In: Majewski A (ed) Gulf of Gdańsk. Geolog. Publ., Warsaw, p 502 (in Polish)

    Google Scholar 

  • Krylov YM, Strekalov SS, Tsyplukhin WF (1976) VetrovyyeVolny I ikhVozdeystviyenaSooruzheniya [wind waves and their interaction with structures]. Gidrometeoizdat, Leningrad, p 255

    Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Marcinkowski T, Szmytkiewicz M (2013) Performance of submerged breakwaters as improvement of beach fill effectiveness in Gdynia, Poland. J Coast Res Spec Issue 65:32–331

    Google Scholar 

  • Mellor GL (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33:1978–1989

    Article  Google Scholar 

  • Mellor GL (2005) Some consequences of the three-dimensional currents and surface wave equations. J Phys Oceanogr 35:2291–2298

    Article  Google Scholar 

  • Mellor GL (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38:2587–2596

    Article  Google Scholar 

  • Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. Proceedings of the 2nd meeting, IAHR: 39–64, Stockholm, Sweden

  • Mojski JE (edt.) (1988–1995) Geological map of the Baltic Sea bottom 1:200000. Polish Geological Institute, Warsaw

  • Ostrowski R, Pruszak Z, Skaja M, Szmytkiewicz M (2010) Variability of hydrodynamic and lithodynamic coastal processes in the east part of the Gulf of Gdańsk. AHEM 57(2):139–153

    Google Scholar 

  • Ribberink JS (1998) Bed-load transport for steady flows and unsteady oscillatory flows. Coast Eng 34:59–82. doi:10.1016/S0378-3839(98)00013-1

    Article  Google Scholar 

  • Różyński G (2010) Wave climate in the Gulf of Gdańsk vs. open Baltic Sea near Lubiatowo, Poland. AHEM 57(2):167–176

    Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands. Thomas Telford Publications, London

    Google Scholar 

  • Soulsby RL, Damgaard JS (2005) Bedload sediment transport in coastal waters. Coast Eng 52(8):673–689

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (1984) Shore protection manual. CERC/WES, Vicksburg

    Google Scholar 

  • Urbański J, Grusza G, Chlebus N (2007) Fizyczna typologia dna Zatoki Gdańskiej. Report on the implementation of research project no. 2 PO4E 006 29.Institute of Oceanography, University of Gdańsk, pp. 40

  • Urbański J, Grusza G, Chlebus N, Kryla L (2008) A GIS-based WFD oriented typology of shallow micro-tidal soft bottom using wave exposure and turbidity mapping. Estuar Coast Shelf S 78(1):27–37

    Article  Google Scholar 

  • Uścinowicz S, Jegliński W, Miotk-Szpiganowicz G, Nowak J, Pączek U, Przezdziecki P, Szefler K, Poręba G (2014) Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed. Oceanologia 56(4):857–880. doi:10.5697/oc.56-4.857

    Article  Google Scholar 

  • Van Rjin LC (2013) Simple general formulae for sand transport in rivers, estuaries and coastal waters (www.Leovanrijn-sediment.Com)

  • Wang XH (2001) A numerical study of sediment transport in a coastal embayment during a winter storm. J Coastal Res 34(Spec. Issue):414–427

    Google Scholar 

  • Wang XH, Pinardi N (2002) Modeling the dynamics of sediment transport and resuspension in the northern Adriatic Sea. J Geophys Res 107(C12):3225. doi:10.1029/2001JC001303

    Article  Google Scholar 

  • Wang XH, Pinardi N, Malacic V (2007) Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001: a numerical modelling study. Cont Shelf Res 27(5):613–633

    Article  Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34:1284–1306

    Article  Google Scholar 

  • Wong M, Parker G (2006) Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J Hydraul Eng 132(11):1159–1168

    Article  Google Scholar 

  • Wu W, Lin Q (2012) A multiple-sized transport formula for nonuniform sediments under current and waves. Proceedings of 33rd Conference on Coastal Engineering, Santander, Spain

  • Yang X, Zhang Q, Zhang J, Tan F, Wu Y, Zhang N, Yang H, Pang Q (2015) An integrated model for three-dimensional cohesive sediment transport in storm event and its application on Lianyungang Harbor, China. Ocean Dynam 65(3):395–417. doi:10.1007/s10236-014-0806-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Institute of Hydroengineering of the Polish Academy of Sciences for providing data on hydro- and morphodynamics in the Polish coastal zone which served as the basis for the calculations presented and for verification of the results. The research described in the paper was supported by the Polish National Centre for Research and Development as part of the project “Development of a predictive model of morphodynamic changes in the coastal zone” based on the decision no. DEC-2011/01/D/ST10/07668.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Gic-Grusza.

Additional information

Responsible Editor: Marco Zavatarelli

This article is part of the Topical Collection on the 8th International Workshop on Modeling the Ocean (IWMO), Bologna, Italy, 710 June 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gic-Grusza, G., Dudkowska, A. Numerical modeling of hydrodynamics and sediment transport—an integrated approach. Ocean Dynamics 67, 1283–1292 (2017). https://doi.org/10.1007/s10236-017-1085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1085-9

Keywords

Navigation