Skip to main content

Advertisement

Log in

Deep circulation driven by strong vertical mixing in the Timor Basin

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The importance of deep mixing in driving the deep part of the overturning circulation has been a long debated question at the global scale. Our observations provide an illustration of this process at the Timor Basin scale of ∼1000 km. Long-term averaged moored velocity data at the Timor western sill suggest that a deep circulation is present in the Timor Basin. An inflow transport of ∼0.15 Sv is observed between 1600 m and the bottom at 1890 m. Since the basin is closed on its eastern side below 1250 m depth, a return flow must be generated above 1600 m with a ∼0.15 Sv outflow. The vertical turbulent diffusivity is inferred from a heat and transport balance at the basin scale and from Thorpe scale analysis. Basin averaged vertical diffusivity is as large as 1 × 10−3 m2 s−1. Observations are compared with regional low-resolution numerical simulations, and the deep observed circulation is only recovered when a strong vertical diffusivity resulting from the parameterization of internal tidal mixing is considered. Furthermore, the deep vertical mixing appears to be strongly dependent on the choice of the internal tide mixing parameterization and also on the prescribed value of the mixing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alford M, Gregg M, Ilyas M (1999) Diapycnal mixing in the Banda Sea: results of the first microstructure measurements in the Indonesian throughflow. Geophys Res Lett 26:2741–2744

    Article  Google Scholar 

  • Alford MH, Girton JB, Voet G, Carter GS, Mickett JB, Klymack J (2013) Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys Res Lett 40(17):4666–4674. doi:10.1002/grl.50684

    Article  Google Scholar 

  • Arneborg L (2002) Mixing efficiencies in patchy turbulence. J Phys Oceanogr 32(5):1496–1506

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Tréguier A-M, Le Sommer J, Beckmann A, Biastoch A, Boening C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, DeCuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56(5-6):543–567

    Article  Google Scholar 

  • Barry ME, Ivey GN, Winters KB, Imberger J (2001) Measurements of diapycnal diffusivities in stratified fluids. J Fluid Mech 442(1):267–291

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Bluteau CE, Jones NL, Ivey GN (2013) Turbulent mixing efficiency at an energetic ocean site. J Geophys Res: Oceans 118(9):4662–4672

    Article  Google Scholar 

  • Bouruet-Aubertot P, Cuypers Y, Ferron B, Dausse D, Menage O, Atmadipoera A, Jaya I (2012). Finescale parameterization of turbulent mixing and internal tides in the Indonesian Throughflow from INDOMIX experiment. In AGU Fall Meeting Abstracts (Vol. 1, p. 1872)

  • Boyer TP, JI Antonov, OK Baranova, C Coleman, HE Garcia, A Grodsky, DR Johnson, RA Locarnini, AV Mishonov, TD O'Brien, CR Paver, JR Reagan, D Seidov, IV Smolyar, MM Zweng (2013). World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., 10.7289/V5NZ85MT

  • Brodeau L, Barnier B, Penduff T, Tréguier A-M, Gulev S (2010) An ERA40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: Comparisons with observations. Geophys Res Lett 30(6):1275. doi:10.1029/ 2002GL016473

    Article  Google Scholar 

  • Cowley R, B Heaney, S Wijffels, L Pender, J Sprintall, S Kawamoto, R Molcard (2008) INSTANT Sunda Data Report Description and Quality Control, available at http://www.marine.csiro.au/~cow074/INSTANTdataQC_v4.pdf

  • Davis KA, Monismith SG (2011) The modification of bottom boundary layer turbulence and mixing by internal waves shoaling on a barrier reef. J Phys Oceanogr 41(11):2223–2241

    Article  Google Scholar 

  • Decloedt T, Luther DS (2012) Spatially heterogeneous diapycnal mixing in the abyssal ocean: a comparison of two parameterizations to observations. J Geophys Res: Oceans 117(C11):1978–2012

    Article  Google Scholar 

  • de Lavergne C, Madec G, Le Sommer J, Nurser AG, Naveira Garabato AC (2015). The impact of a variable mixing efficiency on the abyssal overturning. Journal of Physical Oceanography

  • Dillon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Geophys Res 87(C12):9601–9613. doi:10.1029/JC087iC12p09601

    Article  Google Scholar 

  • Ding Y, Bao X, Yu H, Kuang L (2012) A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model. Ocean Dyn 62:515–532

    Article  Google Scholar 

  • Drushka K, Sprintall J, Gille ST, Brodjonegoro I (2010) Vertical structure of Kelvin waves in the Indonesian throughflow exit passages. J Phys Oceanogr 40:1965–1987

    Article  Google Scholar 

  • Dussin R, A-M Treguier, JM Molines, B Barnier, T Penduff, L Brodeau, G Madec (2009). Definition of the interannual experiment ORCA025-B83, 1958-2007. LPO Report 902

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778

    Article  Google Scholar 

  • Emile-Geay J, Madec G (2009) Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci 5:203–217

    Article  Google Scholar 

  • Fer I, Müller M, Peterson AK (2015) Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean Sci 11:287–304

    Article  Google Scholar 

  • Ferron B, Mercier H, Speer K, Gargett A, Polzin K (1998) Mixing in the Romanche fracture zone. J Phys Oceanogr 28(10):1929–1945

    Article  Google Scholar 

  • Ffield A, Robertson R (2008) Temperature finestructure in the Indonesian Seas. J Geophys Res Oceans, 113(C9)

  • Fieux M, Andrie´ C, Delecluse P, Ilahude AG, Kartavtseff A, Mantisi F, Molcard R, Swallow JC (1994) Measurements within the Pacific-Indian oceans throughflow region. Deep-Sea Res 41:1091–1130

    Article  Google Scholar 

  • Gargett AE (1988) The scaling of turbulence in the presence of stable stratification. J Geophys Res: Oceans (1978–2012) 93(C5):5021–5036

    Article  Google Scholar 

  • Gargett A, Garner T (2008) Determining Thorpe scales from ship-lowered CTD density profiles. J Atmos Ocean Technol 25(9):1657–1670

    Article  Google Scholar 

  • Gordon AL, Giulivi CF, Ilahude AG (2003) Deep topographic barriers within the Indonesian Seas. Deep Sea Res, Part II 50:2205–2228

    Article  Google Scholar 

  • Gregg MC, Alford MH, Kontoyiannis H, Zervakis V, Winkel D (2012) Mixing over the steep side of the Cycladic Plateau in the Aegean Sea. J Mar Syst 89(1):30–47

    Article  Google Scholar 

  • Haertel P, Fedorov A (2012) The ventilated ocean. J Phys Oceanogr 42:161–164

    Article  Google Scholar 

  • Heywood KJ, Naveira Garabato AC, Stevens DP (2002) High mixing rates in the abyssal Southern Ocean. Nature 415:1011–1014

    Article  Google Scholar 

  • Hogg N, Biscaye PE, Gardner W, Schmitz WJ Jr (1982) On the transport and modification of Antarctic bottom water in the Vema Channel. J Mar Res 40:231–283

    Google Scholar 

  • Huang RX (1999) Mixing and energetics of the oceanic thermohaline circulation. J Phys Oceanogr 29:727–746

    Article  Google Scholar 

  • Hughes GO, Griffiths RW (2006) A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model 12:46–79

    Article  Google Scholar 

  • Jayne SR (2009) The impact of abyssal mixing parameterizations in an ocean general circulation model. J Phys Oceanogr 39:1756–1775

    Article  Google Scholar 

  • Kartadikaria AR, Miyazawa Y, Varlamov SM, Nadaoka K (2011) Ocean circulation for the Indonesian seas driven by tides and atmospheric forcings: comparison to observational data. J Geophys Res 116(C9):C09009

    Article  Google Scholar 

  • Katsumata K, Wijffels SE, Steinberg CR, Brinkman R (2010) Variability of the semidiurnal internal tides observed on the Timor Shelf. J Geophys Res 115(C10):C10008

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessieres L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys Res Lett 34:L04604. doi:10.1029/2006GL028405

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Iudicone D, Atmadipoera A, Molcard R (2008a) Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dyn 58:275–288. doi:10.1007/s10236-008-0154-5

    Article  Google Scholar 

  • Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Water mass transformation along the Indonesian throughflow in an OGCM. Ocean Dyn 58:289–309. doi:10.1007/s10236-008-0155-4

    Article  Google Scholar 

  • Koch-Larrouy A, Atmadipoera A, van Beek P, Madec G, Aucan J, Lyard F, Souhaut M (2015) Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep Sea Research Part I: Oceanographic Research Papers

  • Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34(6):891–904

    Article  Google Scholar 

  • Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixin inferred from Lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36:1553–1576

    Article  Google Scholar 

  • Kunze E, MacKay C, McPhee-Shaw EE, Morrice K, Girton JB, Terker SR (2012) Turbulent mixing and exchange with interior waters on sloping boundaries. J Phys Oceanogr 42(6):910–927

    Article  Google Scholar 

  • Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99:24,777–24,798

    Article  Google Scholar 

  • Le Sommer J, Penduff T, Theetten S, Madec G, Barnier B (2009) How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model 29:1–14. doi:10.1016/ j.ocemod.2008.11.007

    Article  Google Scholar 

  • Ledwell JR, Montgomery ET, Polzin KL, St. Laurent LC, Schmitt RW, Toole JM (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:79–182

    Article  Google Scholar 

  • Levitus S, T Boyer, M Conkright, T OBrian, J Antonov, C Stephens, L Stathopolos, D Johnson, R Gelfeld (1998). World Ocean database 1998, technical Report NESDID18, NOAA Atlas.

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, D.C., 184pp

    Google Scholar 

  • Lozovatsky ID, HJS Fernando (2013). Mixing efficiency in natural flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371(1982)

  • MacKinnon J, Johnston TMS, Pinkel R (2008) Strong transport and mixing of deep water through the Southwest Indian Ridge. Nat Geosci 1:755–758

    Article  Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12:381–388

    Article  Google Scholar 

  • Madec G (2008) NEMO reference manual, ocean dynamic component: NEMO-OPA. Preliminary version, Tech. Rep. 27, Note du pôle de modélisation, Institut Pierre Simon Laplace (IPSL), France, ISSN No 1288-1619

  • Melet A, Verron J, Gourdeau L, Koch-Larrouy A (2011) Equatorward pathways of Solomon Sea water masses and their modifications. J Phys Oceanogr 41(4):810–826

    Article  Google Scholar 

  • Melet A, Hallberg R, Legg S, Polzin K (2013) Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J Phys Oceanogr 43(3):602–615

    Article  Google Scholar 

  • Melet A, Hallberg R, Legg S, Nikurashin M (2014) Sensitivity of the ocean state to lee wave driven mixing. J Phys Oceanogr 44:900–921

    Article  Google Scholar 

  • Meyer A, Sloyan BM, Polzin KL, Phillips HE, Bindoff NL (2015) Mixing variability in the Southern Ocean. J Phys Oceanogr 45(4):966–987

    Article  Google Scholar 

  • Molcard R, Fieux M, Ilahude AG (1996) The Indo-Pacific throughflow in the Timor Passage. J Geophys Res 101(C5):12411–12420

    Article  Google Scholar 

  • Müller M, Cherniawsky JY, Foreman MGG, von Storch J-S (2012) Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys Res Lett 39:L19607. doi:10.1029/2012GL053320

    Google Scholar 

  • Munk W (1966) Abyssal recipes. Deep-Sea Res 13:707–730

    Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res 45:1976–2009

    Article  Google Scholar 

  • Nagai T, Hibiya T (2015) Internal tides and associated vertical mixing in the Indonesian Archipelago. J Geophys Res: Oceans 120:3373–3390

    Article  Google Scholar 

  • Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89

    Article  Google Scholar 

  • Penduff T, Le Sommer J, Barnier B, Treguier A-M, Molines JM, Madec G (2007) Influence of numerical schemes on current-topography interactions in ¼° global ocean simulations. Ocean Sci 3:509–524

    Article  Google Scholar 

  • Polzin KL, Toole JM, Schmitt RW (1995) Finescale parameterizations of turbulent dissipation. J Phys Oceanogr 25:306–328

    Article  Google Scholar 

  • Polzin KL, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276(5309):93–96

    Article  Google Scholar 

  • Pratt LJ, JA Whitehead (2007). Rotating hydraulics—nonlinear topographic effects in the ocean and atmosphere, Springer, 608pp

  • Rudnick DL, Boyd TJ, Brinard RE, Carter GS, Egbert GD (2003) From tides to mixing along the Hawaiian Ridge. Science 301(5631):355–357

    Article  Google Scholar 

  • Saenko OA, Merryfield WJ (2011) On the effect of topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr 35:826–834

    Article  Google Scholar 

  • St. Laurent L, Schmitt RW (1999) The contribution of salt fingers to vertical mixing in the North Atlantic tracer release experiment. J Phys Oceanogr 29(7):1404–1424

    Article  Google Scholar 

  • St. Laurent L, Garrett C (2002) The role of internal tides in mixing the deep ocean. J Phys Oceanogr 32:2882–2899

    Article  Google Scholar 

  • St. Laurent L, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23). doi:10.1029/2002GL015633

  • Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J Fluid Mech 525:193–214

    Article  Google Scholar 

  • Simmons HL, Hallberg RH, Arbic BK (2004a) Internal wave generation in a global baroclinic tide model. Deep Sea Res, Part II 51:3043–3068

    Article  Google Scholar 

  • Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004b) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6(3):245–263

    Article  Google Scholar 

  • Sprintall J, Gordon AL, Murtugudde R, Susanto RD (2000) A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J Geophys Res 105:17217–17230

    Article  Google Scholar 

  • Sprintall J, Wijffels S, Gordon AL, Ffield A, Molcard R, DwiSusanto R, Soesilo I, Sopaheluwakan J, Surachman Y, Van Aken H (2004) INSTANT: a new international array to measure the Indonesian Throughflow. Eos Trans AGU 85(39):369–376. doi:10.1029/2004EO390002

    Article  Google Scholar 

  • Sprintall J, Wijffels S, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004-2006. J Geophys Res 114:C07001. doi:10.1029/2008JC005257

    Article  Google Scholar 

  • Tessler ZD, Gordon AL, Pratt LJ, Sprintall J (2010) Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J Phys Oceanogr 40:2679–2695

    Article  Google Scholar 

  • Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Philos Trans Royal Soc Lond A: Math, Phys Eng Sci 286(1334):125–181

    Article  Google Scholar 

  • Thurnherr AM (2006) Diapycnal mixing associated with an overflow in a deep submarine canyon. Deep-Sea Res II 53:194–206

    Article  Google Scholar 

  • Treguier A-M, Barnier B, De Miranda AP, Molines JM, Grima N, Imbard M, Madec G, Messager C, Reynaud T, Michel S (2001) An eddy-permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophys Res 106:22115–22129

    Article  Google Scholar 

  • Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42:477–500

    Article  Google Scholar 

  • Van Aken HM, Brodjonegoro IS, Jaya I (2009) The deepwater motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Res 56:1203–1216

    Article  Google Scholar 

  • Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Lee CM (2014) Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr 44(7):1854–1872

    Article  Google Scholar 

  • Webb DJ, Suginohara N (2001) Vertical mixing in the ocean. Nature 409(37)

  • Wijffels S, Meyers G (2004) An intersection of oceanic waveguides: variability in the Indonesian Throughflow region. J Phys Oceanogr 34:1232–1253

    Article  Google Scholar 

  • Whitehead JA, Worthington LV (1982) The flux and mixing rates of Antarctic Bottom Water within the North Atlantic. J Geophys Res 87:7902–7924

    Article  Google Scholar 

  • Whitehead JA (1989) Internal hydraulic control in rotating fluids—applications to oceans. Geophys Astrophys Fluid Dyn 48(1):169–192

    Article  Google Scholar 

  • Whitehead JA, Wang W (2008) A laboratory model of vertical ocean circulation driven by mixing. J Phys Oceanogr 38:1091–1106

    Article  Google Scholar 

  • Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech 36:281–314

    Article  Google Scholar 

Download references

Acknowledgments

Model experiments were performed using HPC resources from GENCI-IDRIS (Grant 2010-011140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Cuypers.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuypers, Y., Pous, S., Sprintall, J. et al. Deep circulation driven by strong vertical mixing in the Timor Basin. Ocean Dynamics 67, 191–209 (2017). https://doi.org/10.1007/s10236-016-1019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-1019-y

Keywords

Navigation