Skip to main content

Advertisement

Log in

The impact of disposal of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The amount of sediments to be dredged and disposed depends to a large part on the suspended particulate matter (SPM) concentration. Tidal, meteorological, climatological, and seasonal forcings have an influence on the horizontal and vertical distribution of the SPM in the water column and on the bed and control the inflow of fine-grained sediments towards harbors and navigation channels. About 3 million tons (dry matter) per year of mainly fine-grained sediments is dredged in the port of Zeebrugge and is disposed on a nearby disposal site. The disposed sediments are quickly resuspended and transported away from the site. The hypothesis is that a significant part of the disposed sediments recirculates back to the dredging places and that a relocation of the disposal site to another location at equal distance to the dredging area would reduce this recirculation. In order to validate the hypothesis, a 1-year field study was set up in 2013–2014. During 1 month, the dredged material was disposed at a new site. Variations in SPM concentration were related to tides, storms, seasonal changes, and human impacts. In the high-turbidity Belgian near-shore area, the natural forcings are responsible for the major variability in the SPM concentration signal, while disposal has only a smaller influence. The conclusion from the measurements is that the SPM concentration decreases after relocation of the disposal site but indicate stronger (first half of field experiment) or weaker (second half of field experiment) effects that are, however, supported by the environmental conditions. The results of the field study may have consequences on the management of disposal operations as the effectiveness of the disposal site depends on environmental conditions, which are inherently associated with chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adriaens R (2015) Neogene and quarternary clay minerals in the southern North Sea. PhD thesis, KULeuven, Belgium

  • Agrawal Y, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114

    Article  Google Scholar 

  • Agunwamba JC, Onuoha KC, Okoye AC (2012) Potential effects on the marine environment of dredging of the Bonny channel in the Niger Delta. Environ Monit Assess 184:6613–6625. doi:10.1007/s10661-011-2446-3

    Article  Google Scholar 

  • Andrews S, Nover D, Schladow S (2010) Using laser diffraction data to obtain accurate particle size distributions: the role of particlecomposition. Limnol Oceanogr Meth 8:507–526. doi:10.4319/lom.2010.8.507

    Article  Google Scholar 

  • Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary coastal zone continuum: a model study. J Mar Syst 84:49–66. doi:10.1016/j.jmarsys.2010.08.005

    Article  Google Scholar 

  • Badewien TH, Zimmer E, Bartholomä A, Reuter R (2009) Towards continuous long-term measurements of suspended particulate matter (SPM) in turbid coastal waters. Ocean Dyn 59:227–238. doi:10.1007/s10236-009-0183-8

    Article  Google Scholar 

  • Baeye M, Fettweis M, Voulgaris G, Van Lancker V (2011) Sediment mobility in response to tidal and wind-driven flows along the Belgian inner shelf, southern North Sea. Ocean Dyn 61:611–622. doi:10.1007/s10236-010-0370-7

    Article  Google Scholar 

  • Baeye M, Fettweis M, Legrand S, Dupont Y, Van Lancker V (2012) Mine burial in the seabed of high-turbidity area—findings of a first experiment. Cont Shelf Res 43:107–119. doi:10.1016/j.csr.2012.05.009

    Article  Google Scholar 

  • Becker M, Schrottke K, Bartholomä A, Ernstsen V, Winter C, Hebbeln D (2013) Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone. J Geophys Res 118:2175–2187. doi:10.1002/jgrc.20153

    Article  Google Scholar 

  • Bolam SG (2012) Impacts of dredged material disposal on macrobenthic invertebrate communities: a comparison of structural and functional (secondary production) changes at disposal sites around England and Wales. Mar Poll Bull 64:2199–2210. doi:10.1016/j.marpolbul.2012.07.050

    Article  Google Scholar 

  • Bolam SG, Rees HL, Somerfield P, Smith R, Clarke KR, Warwick RM, Atkins M, Garnacho E (2006) Ecological consequences of dredged material disposal in the marine environment: a holistic assessment of activities around the England and Wales coastline. Mar Poll Bull 52:415–426. doi:10.1016/j.marpolbul.2005.09.028

    Article  Google Scholar 

  • Decrop B, De Mulder T, Toorman E, Sas M (2015) Large-eddy simulations of turbidity plumes in crossflow. Europ J Mech 53:68–84. doi:10.1016/j.euromechflu.2015.03.013

  • Du Four I, Van Lancker V (2008) Changes of sedimentological patterns and morphological features due to the disposal of dredge spoil and the regeneration after cessation of the disposal activities. Mar Geol 25:15–29. doi:10.1016/j.margeo.2008.04.011

    Article  Google Scholar 

  • Fettweis M, Baeye M (2015) Seasonal variation in concentration, size and settling velocity of muddy marine flocs in the benthic boundary layer. J Geophys Res 120:5648–5667. doi:10.1002/2014JC010644

    Article  Google Scholar 

  • Fettweis MP, Nechad B (2011) Evaluation of in situ and remote sensing sampling methods for SPM concentrations, Belgian continental shelf (southern North Sea). Ocean Dynamics 61 (2-3):157–171. doi:10.1007/s10236-010-0310-6

  • Fettweis M, Baeye M, Francken F, Lauwaert B, Van den Eynde D, Van Lancker V, Martens C, Michielsen T (2011) Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea. Mar Poll Bull 62:258–268. doi:10.1016/j.marpolbul.2010.11.002

    Article  Google Scholar 

  • Fettweis M, Baeye M, Lee BJ, Chen P, JCR Y (2012a) Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea. Geo-Mar Lett 32:123–137. doi:10.1007/s00367-011-0266-7

    Article  Google Scholar 

  • Fettweis M, Monbaliu J, Nechad B, Baeye M, Van den Eynde D (2012b) Weather and climate related spatial variability of high turbidity areas in the North Sea and the English Channel. Meth Oceanogr 3-4:25–29. doi:10.1016/j.mio.2012.11.001

    Article  Google Scholar 

  • Garel E, Ferreira O (2011) Monitoring estuaries using non-permanent stations: practical aspects and data examples. Ocean Dyn 61:891–902. doi:10.1007/s10236-011-0417-4

    Article  Google Scholar 

  • Ha HK, Maa J-PY, Park K, Kim YH (2011) Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic doppler current profilers. Mar Geol 279:199–209. doi:10.1016/j.margeo.2010.11.002

    Article  Google Scholar 

  • Henson SA (2014) Slow science: the value of long ocean biogeochemistry records. Phil Trans R Soc A 372:20130334. doi:10.1098/rsta.2013.0334

    Article  Google Scholar 

  • Jalón-Rojas I, Schmidt S, Sottolichio A (2015) Turbidity in the fluvial Gironde estuary (Southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions. Hydrol Earth Syst Sci 19:2805–2819. doi:10.5194/hess-19-2805-2015

    Article  Google Scholar 

  • Kapsimalis V, Panagiotopoulos IP, Hatzianestis I, Kanellopoulos TD, Tsangaris C, Kaberi E, Kontoyiannis H, Rousakis G, Kyriakidou C, Hatiris GA (2013) A screening procedure for selecting the most suitable dredged material placement site at the sea. The case of the South Euboean Gulf, Greece. Environ Monit Assess 185:10049–10072. doi:10.1007/s10661-013-3312-2

    Article  Google Scholar 

  • Kirby R (2011) Minimising harbour siltation—findings of PIANC working group 43. Ocean Dyn 61:233–244. doi:10.1007/s10236-010-0336-9

    Article  Google Scholar 

  • Lauwaert B, Bekaert K, Berteloot M, De Backer A, Derweduwen J, Dujardin A, Fettweis M, Hillewaert H, Hoffman S, Hostens K, Ides S, Janssens J, Martens C, Michielsen T, Parmentier K, Van Hoey G, Verwaest T (2009) Synthesis report on the effects of dredged material disposal on the marine environment (licensing period 2008–2009). http://www.mumm.ac.be/Downloads/News/synthesis_report_PW_2009.pdf. Accessed 25 May 2016

  • Le Hir P, Bassoullet P, Jestin H (2000) Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary. Proc. Mar Sci 3:229–247

    Article  Google Scholar 

  • Li Y, Mehta AJ (2000) Fluid mud in the wave-dominated environment revisited. Proc. Mar Sci 3:79–93

    Article  Google Scholar 

  • Mehta AJ (1991) Understanding fluid mud in a dynamic environment. Geo-Mar Lett 11:113–118

    Article  Google Scholar 

  • Mikkelsen O, Hill P, Milligan T (2006) Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J Sea Res 55:87–102. doi:10.1016/j.seares.2005.09.003

    Article  Google Scholar 

  • Motulsky H (2014). Intuitive biostatistics. 3rd edition, Oxford University Press

  • Okada T, Larcombe P, Mason C (2009) Estimating the spatial distribution of dredged material disposed of at sea using particle-size distributions and metal concentrations. Mar Poll Bull 58:1164–1177. doi:10.1016/j.marpolbul.2009.03.023

    Article  Google Scholar 

  • Orpin AR, Ridd PV, Thomas S, Anthony KRN, Marshall P, Oliver J (2004) Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments. Mar Poll Bull 49:602–612. doi:10.1016/j.marpolbul.2004.03.020

    Article  Google Scholar 

  • Rai AK, Kumar A (2015) Continuous measurement of suspended sediment concentration: technological advancement and future outlook. Measurem 76:209–227. doi:10.1016/j.measurement.2015.08.013

    Google Scholar 

  • Simonini R, Ansaloni I, Cavallini F, Graziosi F, Iotti M, Massamba N’Siala G, Mauri M, Montanari G, Preti M, Prevedelli D (2005) Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (northern Adriatic Sea, Italy). Mar Poll Bull 50:1595–1605. doi:10.1016/j.marpolbul.2005.06.031

    Article  Google Scholar 

  • Smith JE, Friedrichs C (2011) Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont Shelf Res 31:50–63. doi:10.1016/j.csr.2010.04.002

    Article  Google Scholar 

  • Smith SDA, Rule MD (2001) The effects of dredge-spoil dumping on a shallow water soft-sediment community in the Solitary Islands Marine Park, NSW Australia. Mar Poll Bull 42:1040–1048

    Article  Google Scholar 

  • Stockmann K, Riethmüller R, Heineke M, Gayer G (2009) On the morphological long-term development of dumped material in a low-energetic environment close to the German Baltic coast. J Mar Syst 75:409–420. doi:10.1016/j.jmarsys.2007.04.010

    Article  Google Scholar 

  • Stronkhorst J, Ariese F, van Hattum B, Postma JF, de Kluijver M, Den Besten PJ, Bergman MJN, Daan R, Murk AJ, Vethaak AD (2003) Environmental impact and recovery at two dumping sites for dredged material in the North Sea. Environ Poll 124:17–31. doi:10.1016/S0269-7491(02)00430-X

    Article  Google Scholar 

  • Thorne PD, Hanes DM (2002) A review of acoustic measurement of small-scale sediment processes. Cont Shelf Res 22:603–632

    Article  Google Scholar 

  • Thorne PD, Hurther D (2014) An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Cont Shelf Res 73:97–118. doi:10.1016/j.csr.2013.10.017

    Article  Google Scholar 

  • Toorman EA (2002) Modelling of turbulent flow with cohesive sediment. Proc. Mar Sci 5:155–169

    Article  Google Scholar 

  • Van den Eynde D, Fettweis M (2006) Modelling of fine-grained sediment transport and dredged material on the Belgian continental shelf. J Coast Res SI39:1564–1569

    Google Scholar 

  • Van den Eynde D, Fettweis M (2014) Towards the application of an operational sediment transport model fort the optimisation of dredging works in the Belgian coastal zone (southern North Sea). In: Dahlin H, Flemming NC, Petersson SE (eds) Proc 6th Int Conf EuroGOOS, pp 250–257

  • van Kessel T, Kranenburg C (1998) Wave-induced liquefaction and flow of subaqueous mud layers. Coast Eng 34:109–127

    Article  Google Scholar 

  • van Ledden M, Wang Z-B, Winterwerp H, de Vriend H (2004) Sand–mud morphodynamics in a short tidal basin. Ocean Dyn 54:385–391. doi:10.1007/s10236-003-0050-y

    Google Scholar 

  • van Maren DS, Winterwerp JC, Sas M, Vanlede J (2009) The effect of dock length on harbour siltation. Cont Shelf Res 29:1410–1425. doi:10.1016/j.csr.2009.03.003

    Article  Google Scholar 

  • Van Maren DS, van Kessel T, Cronin K, Sittoni L (2015) The impact of channel deepening and dredging on estuarine sediment concentration. Cont Shelf Res 95:1–14. doi:10.1016/j.csr.2014.12.010

    Article  Google Scholar 

  • Vanlede J, Dujardin A (2014) A geometric method to study water and sediment exchange in tidal harbors. Ocean Dyn 64:1631–1641. doi:10.1007/s10236-014-0767-9

    Article  Google Scholar 

  • Verlaan PAJ, Spanhoff R (2000) Massive sedimentation events at the mouth of the Rotterdam waterway. J Coast Res 16:458–469

    Google Scholar 

  • Wan Y, Roelvink D, Li W, Qi D, Gu F (2014) Observation and modeling of the storm-induced fluid mud dynamics in a muddy-estuarine navigational channel. Geomorph 217:23–36. doi:10.1016/j.geomorph.2014.03.050

    Article  Google Scholar 

  • Winterwerp JC (2005) Reducing harbour siltation I: methodology. J Waterw Port Coast Ocean Eng 131:258–266. doi:10.1061/(ASCE)0733-950X(2005)131:6(258)

    Article  Google Scholar 

  • Winterwerp JC (2006) Stratification effects by fine suspended sediment at low, medium and very high concentrations. J Geophys Res 111:C05012. doi:10.1029/2005JC003019

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Maritime Access Division of the Flemish Ministry of Mobility and Public Works (MOMO project and contracts 16EF/2011/35 and WL_12_10). Ship Time RV Belgica was provided by BELSPO and RBINS—Operational Directorate Natural Environment. The wave and wind data are from Agency for Maritime and Coastal Services-Coastal Division (Flemish Ministry of Mobility and Public Works). We thank L. Naudts, J. Backers, W. Vanhaverbeke, and K. Hindryckx for all technical aspects of instrumentation and moorings and F. Francken for data processing and archiving of the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fettweis.

Additional information

Responsible Editor: Erik A. Toorman

This article is part of the Topical Collection on the 13th International Conference on Cohesive Sediment Transport in Leuven, Belgium 7–11 September 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fettweis, M., Baeye, M., Cardoso, C. et al. The impact of disposal of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge. Ocean Dynamics 66, 1497–1516 (2016). https://doi.org/10.1007/s10236-016-0996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0996-1

Keywords

Navigation