Skip to main content

Advertisement

Log in

Marine radar ocean wave retrieval’s dependency on range and azimuth

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The strength of the surface wave signal in marine X-band radar (MR) images strongly depends on range and azimuth (i.e., the angle between antenna look and peak wave direction). Traditionally, MR wave analysis is carried out in a set of rectangular windows covering the radar field of view (FOV). The FOV is typically partially obstructed, e.g., due to the coastline or ship superstructures. Especially for ships that are subject to regular course changes, this results in an increased variability or error associated with wave parameters. Using MR measurements from R/P FLIP, acquired off California during the 2010 US Office of Naval Research (ONR) high resolution air–sea interaction (Hi-Res) experiment, this study quantifies the dependency of the radar-based 2D wave spectrum and parameters on range and azimuth. With the help of reference data from a nearby Datawell Waverider buoy, we propose empirical methods to remove the dependency and we illustrate their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The anemometer data were kindly provided by Luc Lenain, Scripps Institution of Oceanography.

References

  • Alpers WR, Hasselmann K (1982) Spectral signal to clutter and thermal noise properties of ocean wave imaging synthetic aperture radars. Int J Remote Sens 3(4):423–446

    Article  Google Scholar 

  • Alpers WR, Ross DB, Rufenach CL (1981) On the detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res 86(C7):6481–6498

    Article  Google Scholar 

  • Bell PS (1999) Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast Eng 37(3-4):513–527

    Article  Google Scholar 

  • Bell PS, Osler JC (2011) Mapping bathymetry using X-band marine radar data recorded from a moving vessel. Ocean Dyn 61(12):2141–2156

    Article  Google Scholar 

  • Borge JCN, Soares CG (2000) Analysis of directional wave fields using X-band navigation radar. Coast Eng 40(4):375–391

    Article  Google Scholar 

  • Borge JCN, Reichert K, Dittmer J (1999) Use of nautical radar as a wave monitoring instrument. Coast Eng 37(3-4):331–342

    Article  Google Scholar 

  • Borge JCN, Rodríguez Rodríquez G, Hessner K, González PI (2004) Inversion of marine radar images for surface wave analysis. J Atmos Oceanic Technol 21(8):1291–1300

    Article  Google Scholar 

  • Borge JCN, Hessner K, Jarabo-Amores P, de la Mata-Moya D (2008) Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series. IET Radar Sonar Navig 2(1):35–41

    Article  Google Scholar 

  • Catalán P A, Haller M C, Holman R A, Plant W J (2011) Optical and microwave detection of wave breaking in the surf zone. IEEE Trans Geosci Remote Sens 49(6 Part 1):1879–1893

    Article  Google Scholar 

  • Cifuentes-Lorenzen A, Edson J B, Zappa CJ, Bariteau L (2013) A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas exchange experiment.J Atmos Oceanic Technol

  • Collins C O, Lund B, Ramos R J, Drennan WM, Graber HC (2013) Multi-platform wave parameter inter-comparison and evaluation during the ITOP experiment. J Atmos Oceanic Technol

  • COST Action 714 (2005) Measuring and analysing the directional spectrum of ocean waves. Office for Official Publications of the European Communities

  • Croney J (1966) Improved radar visibility of small targets in sea clutter. Radio Electron Eng 32(3):135–147

    Article  Google Scholar 

  • Dankert H, Horstmann J (2007) A marine radar wind sensor. J Atmos Oceanic Technol 24(9):1629–1642

    Article  Google Scholar 

  • Donelan M A, Drennan W M, Katsaros K B (1997) The air-sea momentum flux in conditions of wind sea and swell. J Phys Oceanogr 27(10):2087–2099

    Article  Google Scholar 

  • Ewans KC (1998) Observations of the directional spectrum of fetch-limited waves. J Phys Oceanogr 28(3):495–512

    Article  Google Scholar 

  • Frasier SJ, McIntosh RE (1996) Observed wavenumber-frequency properties of microwave backscatter from the ocean surface at near-grazing angles. J Geophys Res C: Oceans 101(C8):18,391–18,407

    Article  Google Scholar 

  • Gommenginger CP, Ward NP, Fisher GJ, Robinson IS, Boxall SR (2000) Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images. J Atmos Oceanic Technol 17(5):665–678

    Article  Google Scholar 

  • Hatten H, Seemann J, Horstmann J, Ziemer F (1998) Azimuthal dependence of the radar cross section and the spectral background noise of a nautical radar at grazing incidence. In: Proc. Geoscience and Remote Sensing Symposium, IEEE International, vol 5, pp 2490–2492

  • Hessner K, Hanson JL (2010) Extraction of coastal wavefield properties from X-band radar. In: Geoscience and remote sensing symposium. IEEE International: 4326–4329

  • Hessner K, Reichert K, Dittmer J, Borge J, Günther H (2001) Evaluation of WaMoS II wave data. In: Proc. fourth int. Symp. on ocean wave measurements and analysis: 221–230

  • Hessner KG, Nieto-Borge JC, Bell PS (2008) Nautical radar measurements in Europe: applications of WaMoS II as a sensor for sea state, current and bathymetry. In: Remote sensing of the european seas. Springer, pp 435–446

  • Hwang PA, Wang DW (2001) Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J Phys Oceanogr 31(5):1346–1360

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1996) Dynamics and modelling of ocean waves. Cambridge University Press

  • Kuik AJ, van Vledder GP, Holthuijsen LH (1988) A method for the routine analysis of pitch-and-roll buoy wave data. J Phys Oceanogr 18(7):1020–1034

    Article  Google Scholar 

  • Lee PHY, Barter JD, Beach KL, Hindman CL, Lake BM, Rungaldier H, Shelton JC, Williams AB, Yee R, Yuen HC (1995) X band microwave backscattering from ocean waves. J Geophys Res 100(C2):2591–2611

    Article  Google Scholar 

  • Ludeno G, Orlandi A, Lugni C, Brandini C, Soldovieri F, Serafino F (2013) X-band marine radar system for high-speed navigation purposes: A test case on a cruise ship. IEEE Geosci Remote S PP(99):1–5

  • Lund B, Graber HC, Horstmann J (2012a) Ocean surface wind retrieval from stationary and moving platform marine radar data. In: Proc. Geoscience and remote sensing symposium, IEEE International, pp 2790–2793

  • Lund B, Graber HC, Romeiser R (2012b) Wind retrieval from shipborne nautical X-band radar data. IEEE Trans Geosci Remote Sens 50(10):3800–3811

    Article  Google Scholar 

  • Lund B, Graber HC, Xue J, Romeiser R (2013) Analysis of internal wave signatures in marine radar data. IEEE Trans Geosci Remote Sens 51(9):4840–4852

    Article  Google Scholar 

  • Nielsen UD (2006) Estimations of on-site directional wave spectra from measured ship responses. Mar Struct 19(1):33–69

    Article  Google Scholar 

  • OceanWaveS GmbH (2012) WaMoS II, Wave Monitoring System, operating manual and installation guide

  • O’Reilly WC, Herbers THC, Seymour RJ, Guza RT (1996) A comparison of directional buoy and fixed platform measurements of Pacific swell. J Atmos Oceanic Technol 13(1):231–238

    Article  Google Scholar 

  • Plant W (1989) The modulation transfer function: Concept and applications. In: Komen G, Oost W (eds) Radar scattering from modulated wind waves: Proceedings of the workshop on modulation of short wind waves in the gravity-capillary range by non-uniform currents, Kluwer

  • Plant WJ, Keller WC (1990) Evidence of bragg scattering in microwave doppler spectra of sea return. J Geophys Res 95(C9):16,299–16,310

    Article  Google Scholar 

  • Ramos RJ, Lund B, Graber HC (2009) Determination of internal wave properties from X-band radar observations. Ocean Eng 36(14):1039–1047

    Article  Google Scholar 

  • Reichert K (1994) Analysis of the azimuth dependence of the navigation radar imaging of the sea surface (in German). Master’s thesis, Universität Hamburg

    Google Scholar 

  • Reichert K, Lund B (2007) Ground based remote sensing as a tool to measure spatial wave field variations in coastal approaches. J Coast Res, Proc 9th Int Coast Symp 50:427–431

    Google Scholar 

  • Seemann J, Ziemer F, Senet CM (1997) A method for computing calibrated ocean wave spectra from measurements with a nautical X-band radar, pp 1148–1154

  • Senet CM, Seemann J, Ziemer F (2001) The near-surface current velocity determined from image sequences of the sea surface. IEEE Trans Geosci Remote Sens 39(3):492–505

    Article  Google Scholar 

  • Serafino F, Lugni C, Nieto Borge JC, Soldovieri F (2011) A simple strategy to mitigate the aliasing effect in X-band marine radar data: Numerical results for a 2d case. Sensors 11(1):1009–1027

    Article  Google Scholar 

  • Stewart R H, Joy J W (1974) HF radio measurements of surface currents. Deep-Sea Res Oceanogr Abstr 21(12):1039–1049

    Article  Google Scholar 

  • Stredulinsky DC, Thornhill EM (2011) Ship motion and wave radar data fusion for shipboard wave measurement. J Ship Res 55(2):73–85

    Google Scholar 

  • Thomson J, D’Asaro E A, Cronin M F, Rogers W E, Harcourt R R, Shcherbina A (2013) Waves and the equilibrium range at ocean weather station P. J Geophys Res C: Oceans 118(11):5951–5962

    Article  Google Scholar 

  • Wetzel LB (1990) Surface waves and fluxes, Kluwer, chap electromagnetic scattering from the sea at low grazing angles, pp 109–171

  • Wyatt L, Green J, Gurgel KW, Nieto Borge J, Reichert K, Hessner K, Günther H, Rosenthal W, Saetra O, Reistad M (2003) Validation and intercomparisons of wave measurements and models during the euroROSE experiments. Coastal Eng 48(1):1–28

    Article  Google Scholar 

  • Young I R, Rosenthal W, Ziemer F (1985) A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J Geophys Res 90(C1):1049–1059

    Article  Google Scholar 

  • Ziemer F (1995) An instrument for the survey of the directionality of the ocean wave field. In: Proc. WMO/IOC workshop on operational ocean monitoring using surface based radars, vol 32, pp 81–87

  • Ziemer F, Dittmer J (1994) A system to monitor ocean wave fields. In: Proc Oceans, IEEE, vol 2, pp 28–31

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Lund.

Additional information

Responsible Editor: Val Swail

This work has been supported by the US Office of Naval Research under grants N000140710650, N000140810793, N000140910392, and N000141310288.

This article is part of the Topical Collection on the 13th Internationals Workshop on Wave Hindcasting and Forecasting in Banff, Alberta, Canada October 27 - November 1, 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, B., Collins, C.O., Graber, H.C. et al. Marine radar ocean wave retrieval’s dependency on range and azimuth. Ocean Dynamics 64, 999–1018 (2014). https://doi.org/10.1007/s10236-014-0725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0725-6

Keywords

Navigation