Skip to main content
Log in

Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we prove existence and uniqueness of viscosity solutions to the following system: For \( i\in \left\{ 1,2,\dots ,m\right\} \)

$$\begin{aligned}{} & {} \min \biggl \{ F\bigl ( y,x,u_{i}(y,x),D u_{i}(y,x),D^2 u_{i}(y,x)\bigl ), u_{i}(y,x)-\max _{j\ne i}\bigl ( u_{j}(y,x)-c_{ij}(y,x)\bigl )\biggl \}\\{} & {} =0, \left( y,x \right) \in \Omega _{L}\\{} & {} u_{i}(0,x)=g_{i}(x), x\in \bar{\Omega },\ u_i(y,x)=f_i(y,x), (y,x)\in (0,L)\times \partial {\Omega } \end{aligned}$$

where \( \Omega \subset \mathbb {R}^n \) is a bounded domain, \( \Omega _{L}:=(0,L)\times \Omega \) and \( F:\left[ 0,L\right] \times \mathbb {R}^n\times \mathbb {R}\times \mathbb {R}^n\times \mathcal {S}^n\rightarrow \mathbb {R}\) is a general second-order partial differential operator which covers even the fully nonlinear case. (We will call a second-order partial differential operator \(F:\left[ 0,L\right] \times \mathbb {R}^n\times \mathbb {R}\times \mathbb {R}^n\times \mathcal {S}^n\rightarrow \mathbb {R}\) fully nonlinear if and only if, it has the following form

$$\begin{aligned} F \left( y,x,u,D_x u,D_{xx}^2 u\right) :=\sum _{|\alpha |=2}\alpha _{\alpha }\left( y,x,u,D_x u,D_{xx}^2 u \right) D^{\alpha }u(y,x)+\alpha _{0}\left( y,x,u,D_x u \right) \end{aligned}$$

with the restriction that at least one of the functional coefficients \( \alpha _{\alpha },\ |\alpha |=2, \) contains a partial derivative term of second order.) Moreover, F belongs to an appropriate subclass of degenerate elliptic operators. Regarding uniqueness, we establish a comparison principle for viscosity sub and supersolutions of the Dirichlet problem. This system appears among others in the theory of the so-called optimal switching problems on bounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let \( V:[0,L]\times \bar{\Omega }\rightarrow \mathbb {R}^m \) with \( V=( V_1,V_2,\dots , V_m) \) be a bounded function (i.e., \(\text {for all } i\in \{1,2,\dots ,m\},\ \sup \{V_i(y,x)\,\ (y,x)\in [0,L]\times \bar{\Omega }\}<+\infty \) and \( \inf \{V_i(y,x)\,\ (y,x)\in [0,L]\times \bar{\Omega }\}>-\infty \)) and continuous on \( [0,L)\times \bar{\Omega }. \) Then, for each \( i\in \{1,2,\dots ,m\}, \) the following functions

    $$\begin{aligned} \hat{V}^1_i(y,x):={\left\{ \begin{array}{ll} V_i(y,x) &{} \ \ (y,x)\in [0,L)\times \bar{\Omega }\\ M &{} y=L,\ x\in \bar{\Omega } \end{array}\right. } \ \text {and} \ \hat{V}^2_i(y,x):={\left\{ \begin{array}{ll} V_i(y,x) &{}\quad (y,x)\in [0,L)\times \bar{\Omega }\\ m &{} y=L,\ x\in \bar{\Omega } \\ , \end{array}\right. } \end{aligned}$$

    where \( M:=\max _{i\in \{1,2,\ldots ,m\}}\sup \{V_i(y,x)\,\ (y,x)\in [0,L]\times \bar{\Omega }\}\) and \( m:=\min _{i\in \{1,2,\ldots ,m\}}\inf \{V_i(y,x)\,\ (y,x)\in [0,L]\times \bar{\Omega }\} \), are upper semicontinuous and lower semicontinuous on \([0,L]\times \bar{\Omega }\) respectively.

  2. Let \( (X,\rho ) \) be a metric space, \( A\subset X \) and \( f:A\rightarrow [-\infty ,\infty ]. \) We define as lower semicontinuous envelope of the function f the function

    $$\begin{aligned} f_{*}:A\rightarrow [-\infty ,\infty ],\ f_{*}(x):=\lim _{\delta \rightarrow 0}\inf \{f(y)\,\ y\in A\cap B_{\rho }(x,\delta )\},\ \text {for all } x\in A. \end{aligned}$$

    Analogously, we define as upper semicontinuous envelope of the function f, the function

    $$\begin{aligned} f^{*}:A\rightarrow [-\infty ,\infty ],\ f^{*}(x):=\lim _{\delta \rightarrow 0}\sup \{f(y)\,\ y\in A\cap B_{\rho }(x,\delta ) \},\ \text {for all } x\in A. \end{aligned}$$
  3. We set as a modification of function \( V_i^{i,\hat{x}\epsilon ^*} \) the function \( \tilde{V}_i^{i,\hat{x},\epsilon ^*}:[0,L]\times \bar{\Omega }\rightarrow \mathbb {R}\) defined as \( \tilde{V}_i^{i,\hat{x},\epsilon ^*}(y,x) = {\left\{ \begin{array}{ll} V_i^{i,\hat{x},\epsilon ^*}(t,x) &{}\quad (y,x)\in [0,T)\times \bar{\Omega }\\ M_{\epsilon _o} &{} y=L,\ x\in \bar{\Omega } \\ \end{array}\right. } \), where \( M_{\epsilon _o}=\max _{(y,x)\in [0,L]\times \bar{\Omega }} V_i^{i,\hat{x},\epsilon _o}(y,x), \) which also satisfies \( M_{\epsilon _o}>=\max _{(y,x)\in [0,L]\times \bar{\Omega }} V_i^{i,\hat{x},\epsilon }(y,x),\ \text {for all }\epsilon \in (0,\epsilon _o]. \) Then, the function \( \tilde{V}_i^{i,\hat{x},\epsilon ^*} \) remains upper semicontinuous on its domain and satisfies at the same time \( \tilde{V}_i^{i,\hat{x},\epsilon ^*}\ge V_i^{i,\hat{x},\epsilon *} \) on \( [0,L]\times \bar{\Omega },\ \text {for all }\epsilon >0 \).

  4. Let \( (X,\rho ) \) be a metric space, \( A\subset X,\ x_o\in A \) and \( f,g:A\rightarrow \mathbb {R}\) mappings. If there exists \( \delta _0>0, \) such that \( \text {for all } x\in B_{\rho }\left( x_o,\delta _0 \right) \cap A,\ f(x)=g(x) \) then, \( f^*(x_o)=g^*(x_o) \) and \( f_*(x_o)=g_*(x_o). \)

  5. Let \( (X,\rho ) \) be a metric space, \( A\subset B\subset X,\ x_o\in A \) and \( f:B\rightarrow \mathbb {R}. \) If the following holds

    $$\begin{aligned} \exists \delta >0,\ A\cap B_{\rho }(x_o,\delta )=B\cap B_{\rho }(x_o,\delta ) \end{aligned}$$

    and the restriction \( f|_A \) is continuous on \( x_o \), then the extension f also is continuous on \( x_o. \)

References

  1. Aleksanyan, G.: Optimal regularity in the optimal switching problem. Ann. Inst. Henri Poincaré Anal Liné aire 33, 1455–1471 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnarson, T., Djehiche, B., Poghosyan, M., Shahgholian, H.: A PDE approach to regularity of solutions to finite horizon optimal switching problems Nonlinear analysis: theory. Methods Appl. 71, 6054–6067 (2009)

    MATH  Google Scholar 

  3. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crandal, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  5. Djehiche, B., Hamadene, S.: On a finite horizon starting and stopping problem with risk of abandonment. Int. J. Theor. Appl. Fin. 12, 523–543 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Djehiche, B., Hamadene, S., Popier, A.: A finite horizon optimal multiple switching problem. SIAM J. Control Optim. 48, 2751–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. El-Asri, B., Fakhouri, I.: Optimal multi-modes switching with the switching cost not necessarily positive (2012). arXiv:1204.1683v1

  8. El-Asri, B., Hamadene, S.: The finite horizon optimal multi-modes switching problem: the viscosity solution approach. Appl. Math. Optim. 60, 213–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Friedman, A.: Optimal stochastic switching and the Dirichlet problem for the Bellman equation. Trans. Am. Math. Soc. 253, 365–389 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamadene, S., Morlais, M.A.: Viscosity solutions of a system of PDEs with interconnected obstacles and switching problem. Appl. Math. Optim. 67, 163–196 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamadéne, S., Zhang, J.: Switching problem and related system of reflected backward SDEs. Stoch. Process. Appl. 120, 403–426 (2010)

  12. Hu, Y., Tang, S.: Multi-dimensional BSDE with oblique reflection and optimal switching. Probab. Theory Relat. Fields 147, 89–121 (2010)

  13. Lee, K-A.: Obstacle Problem for Nonlinear 2nd-Order Elliptic Operator. Ph-Thesis, New York University (1998)

  14. Lee, K.-A.: The obstacle problem for Monge-Ampere equation. Commun. Part. Differ. Equ. 26(1–2), 33–42 (2001)

  15. Lundstr\(\ddot{o}\)m N., Nystr\(\ddot{o}\)m K., Olofsson M.: On systems of variational inequalities in the context of optimal switching problems and operators of Kolmogorov type. Ann. Math. Pura Appl. 193(4), 1213–1247 (2014)

  16. Lundstr\(\ddot{o}\)m, N., Nystr\(\ddot{o}\)m, K., Olofsson, M.: Systems of variational inequalities for non-local operators related to optimal switching problems: existence and uniqueness. Manuscr. Math. 145, 407–432 (2014)

  17. Lundstr\(\ddot{o}\)m, N., Olofsson, M.: Systems of fully nonlinear parabolic obstacle problems with Neumann boundary conditions (2021). arXiv:2105.01983v1

  18. N. Lundstr\(\ddot{o}\)m, M. Olofsson, T. \(\ddot{O}\)nskog,: Existence, uniqueness and regularity of solutions to the systems of nonlocal obstacle problems related to optimal switching. J. Math. Anal. Appl. 475(1), 13–31 (2019)

  19. Milakis, E., Silvestre, L.: Regularity for fully nonlinear elliptic equations with Neumann boundary data. Commun. Part. Differ. Equ. 31(4–6), 1227–1252 (2006)

  20. Milakis, E., Silvestre, L.: Regularity for the nonlinear Signorini problem. Adv. Math. 217, 1301–1312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olofsson, M., \(\ddot{O}\)nskog, T., Lundstrom, N.L.P.: Management strategies for run-of-river hydropower plants: an optimal switching approach. Optim. Eng. 23, 1707–1731 (2022). https://doi.org/10.1007/s11081-021-09683-3

Download references

Acknowledgements

The authors would like to thank the anonymous referee for carefully reading the manuscript and for his/her valuable comments. This work was supported by the University of Cyprus research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Milakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronicou, S., Milakis, E. Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions. Annali di Matematica 202, 2861–2901 (2023). https://doi.org/10.1007/s10231-023-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01343-w

Keywords

Mathematics Subject Classification

Navigation