Skip to main content
Log in

Non-degeneracy of the bubble solutions for the Hénon equation and applications

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We consider the following Hénon equation with critical growth:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = K(|y|)u^{\frac{N+2}{N-2}},u>0, &{}\hbox {in } B_{1}(0) \\ \displaystyle u =0,&{}\hbox {on } \partial B_{1}(0), \end{array}\right. } \end{aligned}$$

where \(B_{1}(0)\) is the unit ball in \({\mathbb {R}}^{N}\), \(K:[0,1] \rightarrow {\mathbb {R}}^{+}\) is a bounded function and \(K''(1)\) exists. We prove a non-degeneracy result of the bubble solutions constructed in [24] via the local Pohozaev identities for \(N \ge 5\). Then, as applications, by using reduction arguments combined with delicate estimates for the modified Green function and the error, we prove the new existence of infinitely many non-radial solutions, whose energy can be arbitrarily large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. I. Ann. Inst. H.Poincaré Anal. Non Linéaire 23(6), 803–828 (2006)

  3. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Diff. Eqn. 216(1), 78–108 (2005)

  4. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278(1), 1–27 (2003)

  5. Cao, D., Peng, S., Yan, S.: Asymptotic behaviour of ground state solutions for the Hénon equation. IMA J. Appl. Math. 74(3), 468–480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial Diff. Eqn. 16(2), 113–145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R}}^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104(6), 1013–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, Y., Li, B., Yan, S.: Exact number of single bubbling solutions for elliptic problems of Ambrosetti-Prodi type. Calc. Var. Partial Diff. Eqn. 59(2), 59–80 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Guo, Y., Liu, T., Nie, J.: Solutions for fractional Schrodinger equation involving critical exponent via local Pohozaev identities. Adv. Nonlinear Stud. 20(1), 185–211 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Y., Nie, J., Niu, M., Tang, Z.: Local uniqueness and periodicity for the prescribed scalar curvature problem of fractional operator in \({\mathbb{R}}^N\). Calc. Var. Partial Diff. Eqn. 56(4). Paper No. 118 (2017)

  11. Guo, Y., Musso, M., Peng, S., Yan, S.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279(6), 108553 (2020)

  12. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. London. Math. Soc. 114(6), 1005–1043 (2017)

  13. Hénon, M.: Numerical experiments on the stabilty of spherical stellar systems. Astronom. Astrophys. 24, 229–238 (1973)

    Google Scholar 

  14. Hirano, N.: Existence of positive solutions for the Hénon equation involving critical Sobolev terms. J. Diff. Eqn. 247(5), 1311–1333 (2009)

    Article  MATH  Google Scholar 

  15. Ni, W.-M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31(6), 801–807 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, S.: Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation. Acta Math. Appl. Sin. Engl. Ser. 22(1), 137–162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274(9), 2606–2633 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pistoia, A., Serra, E.: Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256(1), 75–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial Diff. Eqn. 23(3), 301–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4(3), 467–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Diff. Eqn. 18(1), 57–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Swanson, C.: The best Sobolev constant. Appl. Anal. 47(4), 227–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wei, J., Yan, S.: Infinitely many nonradial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29(3), 997–1020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (12031015).

Appendices

Appendix A: Pohozaev identities

Let

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta u =K(|y|)u^{2^*-1},\quad u>0,\quad &{}\hbox {in } B_{1}(0),\\ \displaystyle u=0, &{}\hbox {on } \partial B_1(0), \end{array}\right. } \end{aligned}$$
(A.1)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta \xi =(2^*-1)K(|y|)u^{2^*-2}\xi , &{}\hbox {in }B_{1}(0), \\ \displaystyle \xi =0, &{}\hbox {on } \partial B_1(0). \end{array}\right. } \end{aligned}$$
(A.2)

Assume that \(\Omega \) is a smooth bounded domain in \(B_{1}(0)\).The following identities can be found in [11].

Lemma A.1

It holds

$$\begin{aligned} \begin{aligned}&-\int _{\partial \Omega }\frac{\partial u}{\partial \nu }\frac{\partial \xi }{\partial y_i} -\int _{\partial \Omega }\frac{\partial \xi }{\partial \nu }\frac{\partial u}{\partial y_i} + \int _{\partial \Omega }\langle \nabla u, \nabla \xi \rangle \nu _{i} - \int _{\partial \Omega }K(|y|)u^{2^*-1}\xi \nu _{i} \\& \quad=\,-\int _{ \Omega }u^{2^*-1}\xi \frac{\partial K(|y|)}{\partial y_{i}}, \end{aligned} \end{aligned}$$
(A.3)

and

$$\begin{aligned} \begin{aligned}&\int _{ \Omega }u^{2^*-1}\xi \langle \nabla K(|y|), y- x_0 \rangle \\ & \quad=\,\int _{\partial \Omega }K(|y|)u^{2^*-1}\xi \langle \nu , y-x_0 \rangle \\&\qquad+ \int _{\partial \Omega }\frac{\partial u}{\partial \nu }\langle \nabla \xi , y-x_0 \rangle +\int _{\partial \Omega }\frac{\partial \xi }{\partial \nu }\langle \nabla u, y-x_0 \rangle +\int _{\partial \Omega }\langle \nabla u, \nabla \xi \rangle \langle \nu , y-x_0 \rangle \\ {}&\qquad+\frac{N-2}{2}\int _{\partial \Omega }\xi \frac{\partial u}{\partial \nu } + \frac{N-2}{2}\int _{\partial \Omega } u\frac{\partial \xi }{\partial \nu }. \end{aligned} \end{aligned}$$
(A.4)

Appendix B: Some identities involving the Green’s function

Recall that

$$\begin{aligned} I_1(u,v,d) = -\int _{\partial B_{d}(x_{k_{n},1})}\frac{\partial u}{\partial \nu }\frac{\partial v}{\partial y_1} -\int _{\partial B_{d}(x_{k_{n},1})}\frac{\partial v}{\partial \nu }\frac{\partial u}{\partial y_i} + \int _{\partial B_{d}(x_{k_{n},1})}\langle \nabla u, \nabla v \rangle \nu _{1}, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} I_2( u,v ,d ) =\,&\int _{\partial B_{d}(x_{k_{n},1})}\frac{\partial u}{\partial \nu }\langle \nabla v, y-x_{k_{n},1} \rangle +\int _{\partial B_{d}(x_{k_{n},1})}\frac{\partial v}{\partial \nu }\langle \nabla u, y-x_{k_{n},1} \rangle \\ {}&\quad-\int _{\partial B_{d}(x_{k_{n},1})}\langle \nabla u, \nabla v \rangle \langle \nu , y-x_{k_{n},1} \rangle \\ {}&\quad+\frac{N-2}{2}\int _{\partial B_{d}(x_{k_{n},1})}v\frac{\partial u}{\partial \nu } + \frac{N-2}{2}\int _{\partial B_{d}(x_{k_{n},1})} u\frac{\partial v}{\partial \nu }. \end{aligned} \end{aligned}$$

We have the following identities involving Green function.

Lemma B.1

For any \(d \in (0, \frac{\delta }{k_n})\), where \(\delta > 0 \) is a fixed small constant, we have

$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,d\bigg ) = -2\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1}), \end{aligned}$$
(B.1)
$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,d\bigg ) = \sum _{j=2}^{k_n}\frac{\partial G}{\partial y_1}(x_{k_{n},1},x_{k_{n},j}), \end{aligned}$$
(B.2)
$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,d \bigg ) = (N-2)H(x_{k_{n},1},x_{k_{n},1}), \end{aligned}$$
(B.3)
$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) ,\sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,d \bigg ) =-\frac{N-2}{2}\sum _{j=2}^{k_n}G(x_{k_{n},1},x_{k_{n},j}), \end{aligned}$$
(B.4)
$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , \frac{\partial G }{\partial x_{1}}(y,x_{k_{n},1}) ,d \bigg ) = (N-1)\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1}), \end{aligned}$$
(B.5)
$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , \sum _{j=2}^{k_n}\bigg (\cos \theta _{j}\frac{\partial G }{\partial x_{1}}(y,x_{k_{n},j}) +\sin \theta _{j}\frac{\partial G }{\partial x_{2}}(y,x_{k_{n},j}) \bigg ) , d \bigg ) \nonumber \\&\quad =-\frac{N-2}{2}\sum _{j=2}^{k_n}\bigg (\cos \theta _{j}\frac{\partial G }{\partial x_{1}}(x_{k_{n},1},x_{k_{n},j}) +\sin \theta _{j}\frac{\partial G }{\partial x_{2}}(x_{k_{n},1},x_{k_{n},j}) \bigg ) \nonumber \\&\quad =-\frac{N-2}{2} \sum _{j=2}^{k_n}\frac{\partial G }{\partial y_{1}}(x_{k_{n},1},x_{k_{n},j}) , \end{aligned}$$
(B.6)

and

$$\begin{aligned} \begin{aligned} I_2\bigg (\sum _{j=2}^{k_n}G(y,x_{k_{n},j}) , \frac{\partial G }{\partial x_{1}}(y,x_{k_{n},1}) , d \bigg ) =-\frac{N}{2} \sum _{j=2}^{k_n}\frac{\partial G }{\partial y_{1}}(x_{k_{n},1},x_{k_{n},j}). \end{aligned} \end{aligned}$$
(B.7)

Proof

We first proof (B.1) and (B.2).

Noting that for \(j=1,\ldots ,k_n\), \(G(y,x_{k_{n},j})\) are harmonic in the domain \(B_{d}(x_{k_{n},1}) \setminus B_{\epsilon } (x_{k_{n},1})\), where \( 0<\varepsilon < d\), we have

$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) ,\displaystyle G(y,x_{k_{n},1}) ,d \bigg ) - I_1\bigg (G(y,x_{k_{n},1}) ,\displaystyle G(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad=\,\displaystyle \int _{B_{d}(x_{k_{n},1}) \setminus B_{\epsilon } (x_{k_{n},1}) }-\Delta G(y,x_{k_{n},1}) \frac{\partial G }{\partial y_{1}}(y,x_{k_{n},j}) -\Delta G(y,x_{k_{n},j}) \frac{\partial G }{\partial y_{1}}(y,x_{k_{n},1}) =\,&0, \end{aligned}$$

and

$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) ,\displaystyle \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,d \bigg ) - I_1\bigg (G(y,x_{k_{n},1}) ,\displaystyle \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,\epsilon \bigg ) \\ & \quad=\,\displaystyle \int _{B_{d}(x_{k_{n},1}) \setminus B_{\epsilon } (x_{k_{n},1}) }-\Delta G(y,x_{k_{n},1})\sum _{j=2}^{k_n} \frac{\partial G }{\partial y_{1}}(y,x_{k_{n},j}) -\Delta \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) \frac{\partial G }{\partial y_{1}}(y,x_{k_{n},1}) =\,&0. \end{aligned}$$

Thus,

$$\begin{aligned} I_1\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) , d \bigg ) = \lim _{\epsilon \rightarrow 0}I_1\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,\epsilon \bigg ), \end{aligned}$$
$$\begin{aligned} I_1\bigg (G(y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) , d \bigg ) = \lim _{\epsilon \rightarrow 0}I_1\bigg (G(y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},2}) ,\epsilon \bigg ). \end{aligned}$$

On the other hand,

$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad=\,I_1\bigg (\Gamma (y,x_{k_{n},1}) - H(y,x_{k_{n},1}), \Gamma (y,x_{k_{n},1}) - H(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad=\,I_1\bigg (\Gamma (y,x_{k_{n},1}) , \Gamma (y,x_{k_{n},1}) ,\epsilon \bigg ) - 2I_1\bigg (H(y,x_{k_{n},1}), \Gamma (y,x_{k_{n},1}) ,\epsilon \bigg ) \\&\qquad+I_1\bigg ( H(y,x_{k_{n},1}), H(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad =\,- 2\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1}) +o_{\epsilon }(1), \end{aligned}$$

and

$$\begin{aligned}&I_1\bigg (G(y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,\epsilon \bigg ) \\& \quad=\,I_1\bigg (\Gamma (y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,\epsilon \bigg ) - I_1\bigg (H (y,x_{k_{n},1}) , \sum _{j=2}^{k_n} G(y,x_{k_{n},j}) ,\epsilon \bigg ) \\ & \quad=\,\displaystyle \sum _{j=2}^{k_n}\frac{\partial G}{\partial y_1}(x_{k_{n},1},x_{k_{n},j}) +o_{\epsilon }(1). \end{aligned}$$

So let \(\epsilon \rightarrow 0\), (B.1) and (B.2) is proved.

Now we prove (B.3). A direct calculation leads to

$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,d \bigg ) -I_2\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad=\,\displaystyle \int _{B_{ d } (x_{k_{n},1}) \setminus B_{ \epsilon } (x_{k_{n},1})} \displaystyle \Delta G(y,x_{k_{n},1}) \langle \nabla G(y,x_{k_{n},1}), y-x_{k_{n},1} \rangle \\ {}&\qquad+ \displaystyle \int _{B_{ d } (x_{k_{n},1}) \setminus B_{ \epsilon } (x_{k_{n},1})} \Delta G(y,x_{k_{n},1}) \langle \nabla G(y,x_{k_{n},1}), y-x_{k_{n},1} \rangle \\ {}&\qquad+ \frac{N-2}{2} \displaystyle \int _{B_{ d } (x_{k_{n},1}) \setminus B_{ \epsilon } (x_{k_{n},1})} \Delta G(y,x_{k_{n},1}) \displaystyle G(y,x_{k_{n},1}) \\ {}&\qquad+ \frac{N-2}{2} \displaystyle \int _{B_{ d } (x_{k_{n},1}) \setminus B_{ \epsilon } (x_{k_{n},1})} G(y,x_{k_{n},1}) \displaystyle \Delta G(y,x_{k_{n},1}) =\,&0. \end{aligned}$$

Thus,

$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,d \bigg ) \\& \quad=\, \lim _{\epsilon \rightarrow 0} I_2\bigg (G(y,x_{k_{n},1}) , G(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad= (N-2)H(x_{k_{n},1},x_{k_{n},1}). \end{aligned}$$

So (B.3) is proved. Similar to the proof of (B.3), we can prove (B.4).

Next we prove (B.5), which can be found in [8]. For completeness, we sketch the proof. It is easy to check

$$\begin{aligned}&I_2\bigg (G(y,x_{k_{n},1}) , \frac{\partial G }{\partial x_{1}}(y,x_{k_{n},1}) ,\epsilon \bigg ) \\& \quad=\,I_2\bigg (\Gamma ( y,x_{k_{n},1} ), \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) - I_2\bigg (H( y,x_{k_{n},1} ), \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) \\ {}&\qquad- I_2\bigg (\Gamma ( y,x_{k_{n},1} ), \frac{\partial H }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) + I_2\bigg (H( y,x_{k_{n},1} ), \frac{\partial H }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) \\& \quad=\,- I_2\bigg (H( y,x_{k_{n},1} ), \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) - I_2\bigg (\Gamma ( y,x_{k_{n},1} ), \frac{\partial H }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) +o_{\epsilon }(1). \end{aligned}$$

By direct computations, we have

$$\begin{aligned} \begin{aligned} I_2\bigg (\Gamma ( y,x_{k_{n},1} ), \frac{\partial H }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) = \frac{N-2}{2} \frac{\partial H }{\partial x_{1}}(x_{k_{n},1},x_{k_{n},1}) + o_{\epsilon }(1). \end{aligned} \end{aligned}$$
(B.8)

On the other hand, we have

$$\begin{aligned}&I_2\bigg (H( y,x_{k_{n},1} ), \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) \\ & \quad=\,\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial H}{\partial \nu }( y,x_{k_{n},1} )\langle \nabla \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}), y-x_{k_{n},1} \rangle \\ {}&\qquad+\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial \frac{\partial \Gamma }{\partial x_{1}}}{\partial \nu }(y,x_{k_{n},1})\langle \nabla H( y,x_{k_{n},1} ), y-x_{k_{n},1} \rangle \\ {}&\qquad-\int _{\partial B_{\epsilon }(x_{k_{n},1})}\langle \nabla H( y,x_{k_{n},1} ), \nabla \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) \rangle \langle \nu , y-x_{k_{n},1} \rangle \\ {}&\qquad+\frac{N-2}{2}\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1})\frac{\partial H}{\partial \nu }( y,x_{k_{n},1} ) \\ {}&\qquad+ \frac{N-2}{2}\int _{\partial B_{\epsilon }(x_{k_{n},1})} H( y,x_{k_{n},1} )\frac{\partial \frac{\partial \Gamma }{\partial x_{1}}}{\partial \nu }(y,x_{k_{n},1}). \end{aligned}$$

Since

$$\begin{aligned} \frac{\partial \frac{\partial \Gamma }{\partial x_{1}}}{\partial \nu }(y,x_{k_{n},1})= -\frac{(N-1)( y- x_{k_{n},1} )_{1}}{\omega _{N-1}| y - x_{k_{n},1} |^{N+1}} \end{aligned}$$

we find

$$\begin{aligned} \begin{aligned}&\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial H}{\partial \nu }( y,x_{k_{n},1} )\langle \nabla \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}), y-x_{k_{n},1} \rangle \\ {}&\qquad+\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial \frac{\partial \Gamma }{\partial x_{1}}}{\partial \nu }(y,x_{k_{n},1})\langle \nabla H( y,x_{k_{n},1} ), y-x_{k_{n},1} \rangle \\ {}&\qquad-\int _{\partial B_{\epsilon }(x_{k_{n},1})}\langle \nabla H( y,x_{k_{n},1} ), \nabla \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) \rangle \langle \nu , y-x_{k_{n},1} \rangle \\ & \quad=\,-2\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{(N-1)( y- x_{k_{n},1} )_{1}^{2}}{\omega _{N-1}| y - x_{k_{n},1} |^{N+1}} \\ {}&\qquad-\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})\int _{\partial B_{\epsilon }(x_{k_{n},1})}\bigg ( \frac{( y- x_{k_{n},1} )_{1}^{2}}{\omega _{N-1}| y - x_{k_{n},1} |^{N-1}} -\frac{N( y- x_{k_{n},1} )_{1}^{2}}{\omega _{N-1}| y - x_{k_{n},1} |^{N+1}}\bigg ) \\ {}&\qquad+ o_{\epsilon }(1) \\& \quad= -\frac{2(N-1)}{N}\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})+ o_{\epsilon }(1). \end{aligned} \end{aligned}$$
(B.9)

Moreover

$$\begin{aligned} \begin{aligned} \frac{N-2}{2}\int _{\partial B_{\epsilon }(x_{k_{n},1})}\frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1})\frac{\partial H}{\partial \nu }( y,x_{k_{n},1} )= \frac{N-2}{2N}\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})+ o_{\epsilon }(1) \end{aligned} \end{aligned}$$
(B.10)

and

$$\begin{aligned} \begin{aligned}&\frac{N-2}{2}\int _{\partial B_{\epsilon }(x_{k_{n},1})} H( y,x_{k_{n},1} )\frac{\partial \frac{\partial \Gamma }{\partial x_{1}}}{\partial \nu }(y,x_{k_{n},1})\\ & \quad=\,-\frac{N-2}{2}\int _{\partial B_{\epsilon }(x_{k_{n},1})}\bigg (H( x_{k_{n},1},x_{k_{n},1} ) + \langle \nabla H(x_{k_{n},1},x_{k_{n},1}) , y -x_{k_{n},1} \rangle + O(\epsilon ^{2}) \bigg ) \\ {}&\qquad\times \frac{(N-1)( y- x_{k_{n},1} )_{1}}{\omega _{N-1}| y - x_{k_{n},1} |^{N+1}} \\ & \quad=\,-\frac{(N-2)(N-2)}{2N}\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})+ o_{\epsilon }(1). \end{aligned} \end{aligned}$$
(B.11)

In conclusion, from (B.9), (B.10) and (B.11), we have

$$\begin{aligned} I_2\bigg (H( y,x_{k_{n},1} ), \frac{\partial \Gamma }{\partial x_{1}}(y,x_{k_{n},1}) , \epsilon \bigg ) = -\frac{N}{2}\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1})+ o_{\epsilon }(1) \end{aligned}$$

Taking \(\epsilon \rightarrow 0\), we have

$$\begin{aligned} \begin{aligned} I_2\bigg (G(y,x_{k_{n},1}) , \frac{\partial G }{\partial x_{1}}(y,x_{k_{n},1}) , d \bigg ) = (N-1)\frac{\partial H}{\partial y_1}(x_{k_{n},1},x_{k_{n},1}). \end{aligned} \end{aligned}$$
(B.12)

Thus, we finish the proof of (B.5). Similarly, we can prove (B.6) and (B.7). \(\square \)

Appendix C: Green function

In this part, we give the estimate of modified Green function, which is necessary for the construction of new bubble solutions. This part is independent of interest.

In general, for any function f defined in \({\mathbb {R}}^N\), we define its corresponding function \(f^*\in H_s\) as follows. We first define \(A_j\) as

$$\begin{aligned} A_j z= \bigl ( r \cos (\theta +\frac{2j \pi }{k}), r \sin (\theta +\frac{2j \pi }{k}), z''\bigg ),\quad j=1, \ldots , k, \end{aligned}$$

where \(z= (z', z'')\in {\mathbb {R}}^N\), \(z'= (r\cos \theta , r\sin \theta )\in {\mathbb {R}}^2\), \(z''\in {\mathbb {R}}^{N-2}\), while

$$\begin{aligned} B_i z= \bigl ( z_1,\ldots , z_{i-1}, -z_i, z_{i+1},\ldots , z_N),\quad i=1, \ldots , N. \end{aligned}$$

Let

$$\begin{aligned} {{\bar{f}}}(y)=\frac{1}{k}\sum _{j=1}^k f(A_j y), \end{aligned}$$

and

$$\begin{aligned} f^*(y) = \frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \bigl ( {{\bar{f}}}(y)+ \bar{f}(B_i y)\bigr ). \end{aligned}$$

Then, one can easily check that \(f^*\in H_s\).

In the following, we discuss the Green’s function of \(L_k\). Since \(\delta _x\) is not in the space \(H_s\), we consider

$$\begin{aligned} L_k u = \delta _x^*, \hbox { in } B_{1}(0), \quad u\in H_s\cap H_{0}^{1}(B_{1}(0)). \end{aligned}$$
(C.1)

The solution of (C.1) is denoted as \(G_k(y, x)\), which we call it the Green function of \(L_k.\) Let

$$\begin{aligned} \delta _x^* =\frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \Bigl ( \frac{1}{k}\sum _{j=1}^k \delta _{A_j x}+ \frac{1}{k}\sum _{j=1}^k \delta _{B_i A_j x}\Bigr ). \end{aligned}$$

We have

Proposition C.1

The solution \(G_k(y, x)\) satisfies

$$\begin{aligned} |G_k(y, x)|\le \frac{C}{N-1}\sum _{i=2}^N \frac{1}{2} \Bigl ( \frac{1}{k}\sum _{j=1}^k \frac{C}{|y- A_j x|^{N-2}}+ \frac{1}{k}\sum _{j=1}^k \frac{C}{|y- B_i A_j x|^{N-2}}\Bigr ). \end{aligned}$$

Proof

Let \(v_1= G(y,x)\) be the Green’s function of \(-\Delta \) in \(B_{1}(0)\) with Dirichlet boundary condition. Let \(v_2\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v= (2^*-1)K(y) u_k^{2^*-2} v_1,&{} \text {in}\; B_{1}(0),\\ v= 0 ,&{} \text {on}\; \partial B_{1}(0). \end{array}\right. } \end{aligned}$$

Then, \(v_2\ge 0\) and

$$\begin{aligned} \begin{array}{ll} v_2(y)&{}= \displaystyle \int _{B_{1}(0)}G(y, z) (2^*-1) u_k^{2^*-2} K(z)v_1\\ &\quad {}\le C \displaystyle \int _{B_1(0)}\frac{1}{|y-z|^{N-2}}\frac{1}{|z-x|^{N-2}}\,dz\\ &\quad {}\le \displaystyle \frac{C}{|y-x|^{N-4}}. \end{array} \end{aligned}$$

We can continue this process to find \(v_i\), which is the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v= (2^*-1) u_k^{2^*-2}K(y) v_{i-1},&{} \text {in}\; B_{1}(0),\\ v= 0 ,&{} \text {on}\; \partial B_{1}(0). \end{array}\right. } \end{aligned}$$

And satisfies

$$\begin{aligned} \begin{aligned} 0\le\,&\,v_i (y)\\ =\,&\int _{B_{1}(0)}G(y, z) (2^*-1) u_k^{2^*-2} K(z)v_{i-1}\\ \le\,&\,C \int _{B_{1}(0)}\frac{1}{|y-z|^{N-2}}\frac{1}{|z-x|^{N-2(i-1)}}\,dz\\ \le\,&\,\frac{C}{|y-x|^{N-2i}}. \end{aligned} \end{aligned}$$

Let i be large so that \(v_i\in L^\infty (B_{1}(0))\). Define

$$\begin{aligned} v=\sum _{l=1}^i v_l\quad \hbox { and } w= G_k(y, x)- v^*, \end{aligned}$$

We then have

$$\begin{aligned} {\left\{ \begin{array}{ll} L_k w = f,&{}\hbox {in } B_{1}(0),\\ w = 0,&{}\hbox {on } \partial B_{1}(0), \end{array}\right. } \end{aligned}$$
(C.2)

where \(f\in L^\infty \cap H_s\). By Theorem 1.1, (C.2) has a solution \(w\in H_s\cap H_{0}^{1}(B_{1}(0))\).

By standard elliptic estimate, we have

$$\begin{aligned} ||w||_{L^{\infty }(B_1(0))}\le C||f||_{L^{\infty }(B_1(0))}. \end{aligned}$$

Thus, the conclusion is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., hu, Y. & Liu, T. Non-degeneracy of the bubble solutions for the Hénon equation and applications. Annali di Matematica 202, 15–58 (2023). https://doi.org/10.1007/s10231-022-01231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01231-9

Keywords

Mathematics Subject Classification

Navigation