Skip to main content
Log in

Persistent homology of graph-like digital images

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we introduce persistent homology for graph-like digital images as a new type of computation of digital homology groups. We calculate persistent homology groups of some graph-like digital images. Moreover, we prove some theorems related to a singleton point and \(\kappa \)-connected graph-like digital images. It has been shown that identity and composition axioms are satisfied for digital persistent homology groups. Finally, we give some applications of the new theory to image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arslan, H., Karaca, I.: Homology groups of \(n\)-dimensional digital images. XXI. Turk. Natl. Math. Symp. B, 1–13 (2008)

    Google Scholar 

  2. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett. 15, 1003–1011 (1994)

    Article  Google Scholar 

  3. Bertrand, G., Malgouyres, R.: Some topological properties of discrete surfaces. J. Math. Imag. Vis. 20, 207–221 (1999)

    Article  Google Scholar 

  4. Boxer, L.: Digitally continuous functions. Pattern Recogn. Lett. 15, 833–839 (1994)

    Article  Google Scholar 

  5. Boxer, L.: A classical construction for the digital fundamental group. J. Math. Imag. Vis. 10, 51–62 (1999)

    Article  MathSciNet  Google Scholar 

  6. Boxer, L.: Properties of digital homotopy. J. Math. Imag. Vis. 22, 19–26 (2005)

    Article  MathSciNet  Google Scholar 

  7. Boxer, L.: Homotopy properties of sphere-like digital images. J. Math. Imag. Vis. 24, 167–175 (2006)

    Article  MathSciNet  Google Scholar 

  8. Boxer, L.: Digital products, wedges and covering spaces. J. Math. Imag. Vis. 25, 159–171 (2006)

    Article  MathSciNet  Google Scholar 

  9. Boxer, L.: Continuous maps on digital simple closed curves. Appl. Math. 1, 377–386 (2010)

    Article  Google Scholar 

  10. Boxer, L., Karaca, I., Oztel, A.: Topological invariants in digital images. J. Math. Sci. Adv. Appl. 11(2), 109–140 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Brimkov, V.E., Klette, R.: Curves, hypersurfaces, and good pairs of adjacency relations. In: Klette, R., Zunic, J. (eds.) Combinatorial Image Analysis, IWCIA 2004. Lecture Notes in Computer Science, vol. 3322, pp. 276–290. Springer, Berlin (2004)

  12. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  13. Demir, E.U., Karaca, I.: Simplicial homology groups of certain digital surfaces. Hacettepe J. Math. Stat. 44(5), 1011–1022 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  15. Edelsbrunner, H.: Persistent homology–a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  16. Edelsbrunner, H., Harer, J.L.: Computational Topology:An Introduction. American Mathematical Society. pp. 147–174 (2010)

  17. Edelsbrunner, H.: Persistent homology in image processing. In: International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2013: Graph-Based Representations in Pattern Recognition. pp. 182–183 (2013)

  18. Edelsbrunner, H., Jablonski, G., Mrozek, M.: The persistent homology of a self-map. Found. Comput. Math. 15, 1213–1244 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ege, O., Karaca, I.: Fundamental properties of simplicial homology groups for digital images. Am. J. Comput. Technol. Appl. 1(2), 25–42 (2013)

    Google Scholar 

  20. Ege, O., Karaca, I.: Cohomology theory for digital images, Romanian. J. Inf. Sci. Technol. 16(1), 10–28 (2013)

    Google Scholar 

  21. Ege, O., Karaca, I., Ege, M.E.: Relative homology groups of digital images. Appl. Math. Inf. Sci. 8(5), 2337–2345 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ege, O., Karaca, I.: Graph topology on finite digital images. Utilitas Math. 109, 211–218 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Gamble, J., Heo, G.: Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multivar. Anal. 101, 2184–2199 (2010)

    Article  MathSciNet  Google Scholar 

  24. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2007)

    Article  MathSciNet  Google Scholar 

  25. Han, S.E.: Minimal simple closed \(18\)-surfaces and a topological preservation of \(3D\) surfaces. Inf. Sci. 176(2), 120–134 (2006)

    Article  MathSciNet  Google Scholar 

  26. Herman, G.T.: Oriented surfaces in digital spaces. CVGIP Gr. Models Image Process. 55, 381–396 (1993)

    Article  Google Scholar 

  27. Karaca, I., Ege, O.: Some results on simplicial homology groups of 2D digital images. Int. J. Inf. Comput. Sci. 1(8), 198–203 (2012)

    Google Scholar 

  28. Malgouyres, R., Bertrand, G.: A new local property of strong \(n\)-surfaces. Pattern Recogn. Lett. 20, 417–428 (1999)

    Article  Google Scholar 

  29. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(17), 1–38 (2017)

    Google Scholar 

  30. Qaiser, T., Sirinukunwattana, K., Nakane, K., Tsang, Y.W., Epstein, D., Rajpoot, N.: Persistent homology for fast tumor segmentation in whole slide histology images. Proced. Comput. Sci. 90, 119–124 (2016)

    Article  Google Scholar 

  31. Romero, A., Rubio, J., Sergeraert, F.: Effective persistent homology of digital images. pp. 1–22. arxiv: 1412.6154v1 (2014)

  32. Spanier, E.: Algebraic Topology, pp. 108–110. McGraw-Hill, New York, NY (1966)

    MATH  Google Scholar 

  33. Takiyama, A., Teramoto, T., Suzuki, H., Yamashiro, K., Tanaka, S.: Persistent homology index as a robust quantitative measure of immunohistochemical scoring. Sci. Rep. 7, 14002 (2017)

    Article  Google Scholar 

  34. Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discret. Computat. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous referees for their helpful suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Ege.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ege, O., Karaca, I. Persistent homology of graph-like digital images. Annali di Matematica 199, 2167–2179 (2020). https://doi.org/10.1007/s10231-020-00962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-00962-x

Keywords

Mathematics Subject Classification

Navigation