Skip to main content

Advertisement

Log in

Geothermal Energy Potential of Active Northern Underground Mines: Designing a System Relying on Mine Water

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Mines in northern regions must heat underground workings, surface buildings, or process water due to frigid weather conditions. Mining companies commonly use fossil fuels for heating, which creates environmental challenges. An eco-conscious alternative, based on local resources and low electricity consumption, is the use of geothermal energy from the mine dewatering system. The Éléonore mine, an active underground mine located in a remote area in northern Québec (Canada), was selected as a case study. The geothermal resource was characterized to design a geothermal heat pump system (GHPS) adapted to mining operations. The energy balance was calculated to establish the heating energy requirements of the mine. Subsequently, the physicochemical properties of the water from different sampling points along the dewatering system were analyzed. Finally, a preliminary GHPS was designed to assess the amount of geothermal energy that can be extracted from the dewatering system of the mine. Under current conditions, a GHPS installed at the exit of the dewatering system could provide 39% of the 26.6 GWh/yr needed to heat the underground workings, reducing heating costs by 33% and greenhouse gas emissions by 1993 t/yr. A hydrogeological numerical model developed for the mine further suggests that a GHPS is sustainable throughout the life of the mine. Thus, this research indicates that, with adequate assessment, GHPSs have the potential to heat active mining operations and contribute to their energy needs in an environmental, affordable, and constant manner.

Chinese

由于气候寒冷, 北方地区的矿井必须为井下工作面、地面建筑或工艺用水供暖。采矿公司常用化石燃料供暖, 却又带来了环境难题。考虑当地资源特点和低电耗要求, 具有生态意识的替代方案是利用矿井排水系统的地热能。选取加拿大魁北克省北部偏远地区的生产矿井Éléonore矿为案例, 研究了该矿井的地热资源特征, 以设计适应采矿作业环境的地源热泵系统 (GHPS) 。首先, 计算了矿井的能量平衡, 确定了矿井供暖所需能量。随后, 分析了沿矿井排水系统不同采样点水样的物理化学特征。最后, 设计出初步的地源热泵系统 (GHPS), 估算了从矿井排水系统中可以提取的地热能源数量。在目前情况下, 如果地源热泵安装于矿井排水系统的出口处, 它能为井下工作面的供暖提供所需能量26.6 GWh/yr的39%, 降低33%供暖成本, 减少1993 t/yr温室气体排放。矿井的水文地质数值模型进一步表明, 地源热泵系统 (GHPS) 能够在矿井的整个生命周期内可持续运行。因此, 研究显示, 在经充分评估之后, 地源热泵系统 (GHPS) 有望为采矿作业供暖, 能够以环保的、可负担的和稳定的方式满足能源需求。

Zusammenfassung

Bergwerke in nördlichen Regionen müssen aufgrund der eisigen Witterungsbedingungen unterirdische Anlagen, überirdische Gebäude und Brauchwasser beheizen. Bergbauunternehmen verwenden zum Heizen in der Regel fossile Brennstoffe, was zu Umweltproblemen führt. Eine umweltbewusste Alternative, die auf lokalen Ressourcen und geringem Stromverbrauch basiert, ist die Nutzung geothermischer Energie aus dem Entwässerungssystem der Mine. Das Bergwerk Éléonore, ein aktives Untertagebergwerk in einem abgelegenen Gebiet im Norden von Québec (Kanada), wurde als Fallstudie ausgewählt. Die geothermische Ressource wurde charakterisiert, um ein geothermisches Wärmepumpensystem (GHPS) zu entwerfen, das an den Bergbaubetrieb angepasst ist. Die Energiebilanz wurde berechnet, um den Heizenergiebedarf des Bergwerks zu ermitteln. Anschließend wurden die physikochemischen Eigenschaften des Wassers an verschiedenen Probenahmestellen entlang des Entwässerungssystems analysiert. Schließlich wurde ein vorläufiges GHPS entworfen, um die Menge an geothermischer Energie abzuschätzen, die aus dem Entwässerungssystem des Bergwerks gewonnen werden kann. Unter den derzeitigen Bedingungen könnte ein am Ausgang des Entwässerungssystems installiertes GHPS 39% der 26,6 GWh/Jahr liefern, die für die Beheizung des unterirdischen Grubengebäudes benötigt werden. Dadurch würden sich die Heizkosten um 33% und die Treibhausgasemissionen um 1.993 t/Jahr verringern. Ein für das Bergwerk entwickeltes numerisches hydrogeologisches Modell deutet außerdem darauf hin, dass ein GHPS während der gesamten Lebensdauer des Bergwerks nachhaltig ist. Diese Untersuchung zeigt also, dass GHPS bei angemessener Beurteilung das Potenzial haben, aktive Bergbaubetriebe zu beheizen und ihren Energiebedarf auf umweltfreundliche, erschwingliche und konstante Weise zu decken.

Resumen

Las minas de las regiones septentrionales deben calefaccionar los trabajos subterráneos, los edificios de la superficie o el agua de proceso debido a las frías condiciones meteorológicas. Las empresas mineras suelen utilizar combustibles fósiles para la calefacción, lo que crea problemas medioambientales. Una alternativa ecológica, basada en los recursos locales y el bajo consumo de electricidad, es el uso de la energía geotérmica del sistema de desagüe de la mina. La mina Éléonore, una mina subterránea activa situada en una zona remota del norte de Quebec (Canadá), fue seleccionada como caso de estudio. Se caracterizó el recurso geotérmico para diseñar un sistema de bomba de calor geotérmica (GHPS) adaptado a las operaciones mineras. Se calculó el balance energético para establecer las necesidades de energía de calefacción de la mina. Posteriormente, se analizaron las propiedades fisicoquímicas del agua de diferentes puntos de muestreo a lo largo del sistema de desagüe. Por último, se diseñó un GHPS preliminar para evaluar la cantidad de energía geotérmica que puede extraerse del sistema de desagüe de la mina. En las condiciones actuales, una GHPS instalada a la salida del sistema de desagüe podría proporcionar el 39% de los 26,6 GWh/año necesarios para calefaccionar las labores subterráneas, reduciendo los costos de calefacción en un 33% y las emisiones de gases de efecto invernadero en 1993 t/año. Un modelo numérico hidrogeológico desarrollado para la mina sugiere además que un GHPS es sostenible durante toda la vida de la mina. De este modo, esta investigación indica que, con una evaluación adecuada, las GHPS tienen el potencial de calentar las explotaciones mineras activas y de contribuir a sus necesidades energéticas de manera ambiental, asequible y constante.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Habaibeh A, Athresh AP, Parker K (2018) Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system. Appl Energy 211:393–402. https://doi.org/10.1016/j.apenergy.2017.11.025

    Article  Google Scholar 

  • Alvarado EJ (2020) Geothermal energy potential of active mines in northern regions: the Éléonore mine case-study. MSc thesis, Institut national de la recherche scientifique

  • Álvarez R, Ordóñez A, García R, Loredo J (2018) An estimation of water resources in flooded, connected underground mines. Eng Geol 232:114–122. https://doi.org/10.1016/j.enggeo.2017.11.016

    Article  Google Scholar 

  • Andrés C, Ordóñez A, Álvarez R (2017) Hydraulic and thermal modelling of an underground mining reservoir. Mine Water Environ 36(1):24–33. https://doi.org/10.1007/s10230-015-0365-1

    Article  Google Scholar 

  • ASHRAE (American Soc of Heating, Refrigerating and Air-Conditioning) Engineers I (2015) ASHRAE Handbook—Heating, Ventilating, and Air-Conditioning Applications (SI Edition). Ch 49, Water Treatment: Deposition, Corrosion, and Biological Control. ASHRAE, Atlanta

  • Athresh AP, Al-Habaibeh A, Parker K (2016) The design and evaluation of an open loop ground source heat pump operating in an ochre-rich coal mine water environment. Int J Coal Geol 164:69–76. https://doi.org/10.1016/j.coal.2016.04.015

    Article  Google Scholar 

  • Baier J, Polák M, Šindelář M, Uhlík J (2011) Numerical modeling as a basic tool for evaluation of using mine water as a heat source. WIT Trans Eco Environ 143:73–84. https://doi.org/10.2495/ESUS110071

    Article  Google Scholar 

  • Bailey MT, Gandy CJ, Watson IA, Wyatt LM, Jarvis AP (2016) Heat recovery potential of mine water treatment systems in Great Britain. Int J Coal Geol 164:77–84. https://doi.org/10.1016/j.coal.2016.03.007

    Article  Google Scholar 

  • Banks D, Athresh A, Al-Habaibeh A, Burnside N (2019) Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustain Water Resour Manag 5(1):29–50. https://doi.org/10.1007/s40899-017-0094-7

    Article  Google Scholar 

  • Banks D (2017) Integration of Cooling into Mine Water Heat Pump Systems (v.F1.1), Report № v.F1.1, Univ of Glasgow, Glasgow

  • Beausoleil C, Fleury D, Fortin A, Brisson T, Joncas L (2014) Éléonore gold project Quebec, Canada, Report № NI 43-101, Québec (unpublished)

  • Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken

    Google Scholar 

  • Bertoli C (2015) Diavik wind farm. Rio Tinto. https://bit.ly/2WDHxLm. Accessed 15 Jan 2020 (in French)

  • Blessent D (2009) Integration of 3D geological and numerical models based on tetrahedral meshes for hydrogeological simulations in fractured porous media. PhD Diss, Univ Laval

  • Charland A, Perron M, Rispoli A, Bussières M, Bergeron S (2018) Éléonore gold project Quebec, Canada, Report № NI 43-1011-205 p (unpublished)

  • Dow Chemicals (2009) DOWFROST™ HD heat transfer fluid: why a minimum 25% glycol concentration is recommended in GSHP applications. Dow Chemical Co., United States https://dow.inc/3NFPWc3. Accessed 15 Jan 2020

  • Comeau F-A, Raymond J, Malo M (2017) Potentiel géothermique du nord du Québec: évaluation préliminaire, Report № 1660, Institut national de la recherche scientifique, Québec (in French)

  • Dinçer İ, Zamfirescu C (2016) Drying phenomena: theory and applications, 1st edn. Wiley, West Sussex

    Google Scholar 

  • Directorate-General for Research and Innovation—European Commission (2019) Low-carbon after-life: sustainable use of flooded coal mine voids as a thermal energy source: a baseline activity for minimising post-closure environmental risks (LoCAL): final report. https://doi.org/10.2777/715020

  • Domingue C (2017) 3D modeling of groundwater flow and evaluation of the effectiveness of different cementing methods for the reduction of water infiltration at the Éléonore mine. MSc Thesis, Univ Laval (in French)

  • Farr G, Sadasivam S, Manju WIA, Thomas HR, Tucker D (2016) Low enthalpy heat recovery potential from coal mine discharges in the South Wales Coalfield. Int J Coal Geol 164:92–103. https://doi.org/10.1016/j.coal.2016.05.008

    Article  Google Scholar 

  • Fontaine A, Dubé B, Malo M, McNicoll V, Brisson T, Doucet D, Goutier J (2015) Geology of the metamorphosed Roberto gold deposit (Éléonore Mine), James Bay region, Quebec: diversity of mineralization styles in a polyphase tectonometamorphic setting. Targeted Geoscience Initiative 4: contributions to the understanding of Precambrian lode gold deposits and implications for exploration. Natural Resources Canada, Ottawa, pp 209–225. https://doi.org/10.4095/296624

  • Ghomshei M, Meech J (2005) Usable heat from mine waters: coproduction of energy and minerals from “mother earth”. In: Meech J (ed) Intelligence in a small materials world. Destech, Lancaster

  • Gjengedal S, Ramstad RK, Hilmo BO, Frengstad BS (2019) Fouling and clogging surveillance in open loop GSHP systems. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-019-01556-5

    Article  Google Scholar 

  • Glencore Canada, Raglan Mine (2018) Raglan mine operates its second wind turbine. https://www.glencore.ca/en/Media-and-insights/Insights/Raglan-Mine-Operates-its-Second-Wind-Turbine. Accessed on 12 Dec 2021

  • Golder Associates (2009) Hydrogeological study of the proposed underground mine (original 2007 design—3500 t/day), Eleonore Project (Internal report—unpublished)

  • Grasby S, Allen D, Bell S, Chen Z, Ferguson G, Jessop A, Kelman M, Ko M, Majorowicz J, Moore M (2011) Geothermal energy resource potential of Canada. Geological Survey of Canada, Open file 6941 (revised) 302. https://doi.org/10.4095/291488

  • Hounslow A (1995) Water quality data: analysis and interpretation, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Jessop AM, Macdonald JK, Spence H (1995) Clean energy from abandoned mines at Springhill. Nova Scotia Energy Sources 17(1):93–106. https://doi.org/10.1080/00908319508946072

    Article  Google Scholar 

  • Karlsdóttir SN (2012) 7.08—Corrosion, scaling and material selection in geothermal power production. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Oxford, pp 241–259. https://doi.org/10.1016/B978-0-08-087872-0.00706-X

  • Kavanaugh SP, Rafferty KD (2014) Geothermal heating and cooling: design of ground-source heat pump systems. ASHRAC Engineers, Atlanta

  • Koufos K (2012) Assessing the potential to implement open loop geothermal systems in Canadian underground mines. MSc thesis, McGill Univ, Montreal

  • Langelier WF (1936) The analytical control of anti-corrosion water treatment. J Am Water Work Assoc 28(10):1500–1521

    Article  Google Scholar 

  • Lara L, Colinas I, Mallada M, Hernández-Battez A, Viesca J (2017) Geothermal use of mine water. Eur Geol 43:40–45

    Google Scholar 

  • Larson TE, Skold RV (1958) Laboratory studies relating mineral quality of water to corrosion of steel and cast iron. Corrosion 14(6):43–46

    Article  Google Scholar 

  • Lévy F, Jaupart C, Mareschal JC, Bienfait G, Limare A (2010) Low heat flux and large variations of lithospheric thickness in the Canadian Shield. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB006470

    Article  Google Scholar 

  • Loredo C, Roqueñí N, Ordóñez A (2016) Modelling flow and heat transfer in flooded mines for geothermal energy use: a review. Int J Coal Geol 164:115–122. https://doi.org/10.1016/j.coal.2016.04.013

    Article  Google Scholar 

  • Loredo C, Ordonez A, Garcia-Ordiales E, Alvarez R, Roqueni N, Cienfuegos P, Pena A, Burnside NM (2017) Hydrochemical characterization of a mine water geothermal energy resource in NW Spain. Sci Total Environ 576:59–69. https://doi.org/10.1016/j.scitotenv.2016.10.084

    Article  Google Scholar 

  • Madiseh SAG, Ghomshei MM, Hassani FP, Abbasy F (2012) Sustainable heat extraction from abandoned mine tunnels: a numerical model. J Renew Sustain Energy 4(3):1–16. https://doi.org/10.1063/1.4712055

    Article  Google Scholar 

  • Majorowicz JA, Minea V (2015) Shallow and deep geothermal energy potential in low heat flow/cold climate environment: northern Québec, Canada, case study. Environ Earth Sci 74(6):5233–5244. https://doi.org/10.1007/s12665-015-4533-1

    Article  Google Scholar 

  • Malolepszy Z, Demollin-Schneiders E, Bowers D (2005) Potential use of geothermal mine waters in Europe. In: Proceedings of the world geothermal congress, Antalya, Turkey

  • Marshall B (2016) Facts and figures of the Canadian mining industry. In: Associates WCE (ed) Mining assoc of Canada (MAC), Ottawa, Ontario

  • Menéndez J, Ordónez A, Fernández-Oro JM, Loredo J, Díaz-Aguado MB (2020) Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings. Renew Energy 146:1166–1176. https://doi.org/10.1016/j.renene.2019.07.054

    Article  Google Scholar 

  • Mielke P, Weinert S, Bignall G, Sass I (2016) Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo volcanic zone, New Zealand. J Volcanol Geotherm Res 324:179–189. https://doi.org/10.1016/j.jvolgeores.2016.06.002

    Article  Google Scholar 

  • Natural Resources Canada (2018) Canadian industry program for energy conservation (CIPEC), Ottawa, Canada. https://bit.ly/33nXA2U. Accessed 28 Nov 2019

  • Natural Resources Canada (2019a) Canadian climate normals 1981–2010 station data, La Grande Rivière Airport. http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 12 Apr 2019a

  • Natural Resources Canada (2019b) Nunavik mining: RAGLAN 2.0 large scale renewable energy smart grid, Ottawa, Ontario. https://bit.ly/2XSJTrJ. Accessed 30 Nov 2019b

  • Nogara J, Zarrouk SJ (2018) Corrosion in geothermal environment: part 1: fluids and their impact. Renew Sustain Energy Rev 82:1333–1346. https://doi.org/10.1016/j.rser.2017.06.098

    Article  Google Scholar 

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16. https://doi.org/10.1016/j.apgeochem.2015.02.008

    Article  Google Scholar 

  • Ochsner K (2012) Geothermal heat pumps: a guide for planning and installing. Routledge, London

    Book  Google Scholar 

  • Ordóñez Alonso MA, Andrés Arias C, Álvarez García R, Jardón Palacio JS (2010) Use of groundwater as a water and energy resource. Application to the Barredo-Figaredo mining reservoir. PhD Diss, Oviedo Univ (in Spanish)

  • Preene M, Younger P (2014) Can you take the heat? Geothermal energy in mining. Int J Min Sci Technol 123(2):107–118. https://doi.org/10.1179/1743286314y.0000000058

    Article  Google Scholar 

  • Puckorius P, Brooke J (1991) A new practical index for calcium carbonate scale prediction in cooling tower systems. Corrosion 47(4):280–284. https://doi.org/10.5006/1.3585256

    Article  Google Scholar 

  • Rafferty KD (2004) Water chemistry issues in geothermal heat pump systems. ASHRAE Trans 110(1):550–555

    Google Scholar 

  • Rafferty K (1999) Scaling in geothermal heat pump systems. US Dept of Energy, Klamath Falls, OR

  • Ravenelle J-F (2010) Insights on the geology of the world-class Roberto gold deposit, Éléonore property, James Bay area, Quebec Report №. Geological Survey of Canada, Geological Survey of Canada, Current Research 2010-1. https://doi.org/10.4095/261482

  • Raymond J, Therrien R, Hassani FP (2008) Overview of geothermal energy resources in Québec (Canada) mining environments. In: Proceedings of the 10th international mine water assoc congress

  • Raymond J, Therrien R (2008) Low-temperature geothermal potential of the flooded Gaspe Mines, Quebec, Canada. Geothermics 37(2):189–210. https://doi.org/10.1016/j.geothermics.2007.10.001

    Article  Google Scholar 

  • Raymond J, Therrien R (2014) Optimizing the design of a geothermal district heating and cooling system located at a flooded mine in Canada. Hydrogeol J 22(1):217–231. https://doi.org/10.1007/s10040-013-1063-3

    Article  Google Scholar 

  • Raymond J (2010) Geothermal system optimization in mining environments. PhD Diss, Univ Laval

  • Renz A, Ruhaak W, Schatzl P, Diersch HJG (2009) numerical modeling of geothermal use of mine water: challenges and examples. Mine Water Environ 28(1):2–14. https://doi.org/10.1007/s10230-008-0063-3

    Article  Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67(5):873–880. https://doi.org/10.1016/S0016-7037(02)01165-1

    Article  Google Scholar 

  • Ryznar JW (1944) A new index for determining amount of calcium scale formed by a water. J Am Water Work Assoc 36:472–483. https://doi.org/10.1002/j.1551-8833.1944.tb20016.x

    Article  Google Scholar 

  • Therrien, McLaren R, Sudicky E, Panday S (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, Univ of Waterloo, Ontario

  • Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23(1–2):1–44. https://doi.org/10.1016/0169-7722(95)00088-7

    Article  Google Scholar 

  • Ugorets V, Pereira C (2018) Dependence of predicted dewatering on size of hydraulic stress used for groundwater model calibration. Mine Water Solutions, Univ of British Columbia

  • Uhlík J, Baier J (2012) Model evaluation of thermal energy potential of hydrogeological structures with flooded mines. Mine Water Environ 31(3):179–191. https://doi.org/10.1007/s10230-012-0186-4

    Article  Google Scholar 

  • Vision Biomasse Québec (2015) Heating with residual forest biomass. Québec, Québec, pp 1–31 (in French)

  • Voss CI (2011) Editor’s message: groundwater modeling fantasies—part 1, adrift in the details. Hydrogeol J 19(7):1281–1284. https://doi.org/10.1007/s10040-011-0789-z

    Article  Google Scholar 

  • Walraven D, Laenen B, D’haeseleer W (2014) Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles. Energy Convers Manag 87:227–237. https://doi.org/10.1016/j.enconman.2014.07.019

    Article  Google Scholar 

  • Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25(1):1–14. https://doi.org/10.1007/s10230-006-0103-9

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fonds de recherche du Québec—nature et technologies (FQRNT) for the sustainable development of the mining industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Jose Alvarado.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado, E.J., Raymond, J., Therrien, R. et al. Geothermal Energy Potential of Active Northern Underground Mines: Designing a System Relying on Mine Water. Mine Water Environ 41, 1055–1081 (2022). https://doi.org/10.1007/s10230-022-00900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00900-8

Keywords

Navigation