Skip to main content
Log in

Detection of Abandoned Coal Mine Goaf in China’s Ordos Basin Using the Transient Electromagnetic Method

Untersuchung des Alten Mannes in Altbergbauen im Ordos Becken in China mit transienter Elektromagnetik (TEM)

Detección de los hoyos de una mina de carbón abandonada en la Cuenca de Ordos de China mediante el sondeo electromagnético transitorio

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Early coal mining and management methods left a large number of unknown goafs in China’s important Ordos Basin, which has restricted the safe production in today’s large-scale mines. The transient electromagnetic (TEM) method is the main geophysical tool used to detect the goaf. We considered the geological conditions of Ordos Basin in studying the optimal working parameters, electromagnetic (EM) interference, and terrain influence. The numerical simulation results of primary and secondary fields show that the most powerful abnormal signal can be obtained for the common 100 m deep goaf of the Ordos Basin by using a loop at least 240 m × 240 m. Time compensation and a polynomial fitting algorithm can be used to separate and weaken the TEM signal’s EM noise. The terrain height difference mainly affects TEM’s depth parameters, which can be modified to correct the topographic influence by considering the lateral continuity of the sedimentary strata. Three successful detection cases show that the study’s results can be used effectively in the Ordos Basin.

Zusammenfassung

Frühere Abbauverfahren und Managementmethoden im Kohlenbergbau haben in Chinas wichtigem Ordosbecken unbekannten Alten Mann in großer Zahl hinterlassen, der die sichere Produktion der heutigen großen Bergbaue einschränkt. Die transiente Elektromagnetik (TEM) ist das wichtigste geophysikalische Hilfsmittel zur Untersuchung des Alten Mannes. Wir berücksichtigten die geologischen Bedingungen des Ordos-Beckens bei der Untersuchung der optimalen Betriebsparameter, der elektromagnetischen (EM) Störungen und des Geländeeinflusses. Die numerischen Simulationsergebnisse der primären und sekundären Felder zeigen, dass das stärkste anormale Signal für den gewöhnlich 100 m tiefen Alten Mann des Ordos-Beckens erhalten werden kann, wenn eine Schleife von mindestens 240 m × 240 m verwendet wird. Zeitkompensation und ein polynomischer Anpassungsalgorithmus können verwendet werden, um das EM-Rauschen des TEM-Signals zu trennen und abzuschwächen. Der Geländehöhenunterschied wirkt sich hauptsächlich auf die Tiefenparameter des TEM aus, die modifiziert werden können, um den topographischen Einfluss zu korrigieren, indem die laterale Kontinuität der Sedimentschichten berücksichtigt wird. Drei erfolgreiche Nachweisfälle zeigen, dass die Ergebnisse der Studie im Ordos-Becken effektiv genutzt werden können.

瞬变电磁法探测中国鄂尔多斯盆地废弃采空区

早期煤炭开采和管理在中国鄂尔多斯盆地留下了大量未知采空区, 制约着当今大型煤矿安全生产。瞬变电磁法是探测采空区的主要地球物理方法。在研究瞬变电磁法最佳运行参数, 电磁干扰和地形影响时, 考虑了鄂尔多斯盆地的地质条件。一次场和二次场数值模拟结果表明, 至少采用240m × 240m回路才能获取鄂尔多斯盆地多数100m深废弃采空区的最强异常信号。采用时间补偿和多项式拟合算法分离和减弱瞬变电磁信号的噪声。地形高差主要影响瞬变电磁深度参数, 通过考虑沉积地层侧向连续性的方法修正地形影响。三个瞬变电磁成功勘探实例表明研究结果能够有效地应用于鄂尔多斯盆地其它地区。

Resumen

Los primeros métodos de explotación y gestión del carbón dejaron un gran número de hoyos desconocidos en la importante cuenca de Ordos de China, lo que ha restringido la producción segura en las minas de gran escala que hay en la actualidad. El sondeo electromagnetismo transitorio (TEM) es la principal herramienta geofísica utilizada para detectar los hoyos. Consideramos las condiciones geológicas de la Cuenca de Ordos al estudiar los parámetros de trabajo óptimos, la interferencia electromagnética (EM) y la influencia del terreno. Los resultados de la simulación numérica de los campos primarios y secundarios muestran que la señal anormal más potente puede obtenerse para el hoyo común de 100 m de profundidad de la Cuenca de Ordos utilizando un bucle de al menos 240 m × 240 m. Puede utilizarse la compensación de tiempo y un algoritmo de ajuste polinómico para separar y debilitar el ruido EM de la señal TEM. La diferencia de altura del terreno afecta principalmente a los parámetros de profundidad de TEM, que pueden modificarse para corregir la influencia topográfica considerando la continuidad lateral de los estratos sedimentarios. Tres casos exitosos de detección muestran que los resultados del estudio pueden ser usados efectivamente en la Cuenca de Ordos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson N, Roark M, Shoemaker M, Baker J (1998) Reflection seismic mapping of an abandoned coal mine, Belleville, Illinois. J Environ Eng Geophys 3(2):81–88

    Article  Google Scholar 

  • Bridge CF, Bizzell KR, Ramachandran K (2015) Mapping acid mine drainage at an abandoned mine site in Ottawa county, Oklahoma using 3D electrical resistivity tomography. Proc, Symp on the Application of Geophysics to Engineering and Environmental Problems, Soc of Exploration Geophysicists and Environment and Engineering Geophysical Society. https://doi.org.10.4133/SAGEEP.28-040

  • Cheng JL, Pan DM, Li W, Liu SC, Wang YH, Jiang GQ (2010) Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area. J China Coal Soc 35(2):227–231

    Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300

    Article  Google Scholar 

  • Cook JC (1975) Radar transparencies of mine and tunnel rocks. Geophysics 40(5):865–885

    Article  Google Scholar 

  • deGrootHedlin CD, Constable SC (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55(55):1613–1624

    Article  Google Scholar 

  • Di QY, Wang MY (2010) Determining areas of leakage in the Da Ye Dam using multi-electrode resistivity. Bull Eng Geol Environ 69(1):105–109

    Article  Google Scholar 

  • Garg NR, Keller GV (1986) Spatial and temporal analysis of electromagnetic survey data. Geophysics 51(1):272–273

    Article  Google Scholar 

  • Gochioco LM (2003) Geophysical technologies for detecting underground coal mine voids—an interactive forum. Lead Edge 22(9):848–920

    Article  Google Scholar 

  • Gochioco LM, MillerRuev TF Jr (2008) High-resolution 2D surface seismic reflection survey to detect abandoned old coal mine works to improve mine safety. Lead Edge 27(1):80–86

    Article  Google Scholar 

  • Hördt A, Müller M (2000) Understanding LOTEM data from mountainous terrain. Geophysics 65(4):1113–1123

    Article  Google Scholar 

  • Hutchinson P, Krivos H (2014) Electrical and gravity mapping of a sink hole in state college, PA. Proc, Symp on the Application of Geophysics to Engineering and Environmental Problems, 492-497

  • Irons BM (1970) A frontal solution program for finite element analysis. Int J Numer Method Eng 2(1):5–32

    Article  Google Scholar 

  • Ji YJ, Li DS, Yuan GY, Lin J, Du SY, Xie LJ, Wang Y (2016) Noise reduction of time domain electromagnetic data: application of a combined wavelet denoising method. Radio Sci 51(6):680–689

    Article  Google Scholar 

  • Johnson WJ (2003) Case histories of DC resistivity measurements to map shallow coal mine workings. Lead Edge 22(6):571–573

    Article  Google Scholar 

  • Kaufman AA, Keller GV (1983) Frequency and Transient Sounding. Elsevier, London

    Google Scholar 

  • Li H, Xue GQ, Zhou NN, Chen WY (2015) Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure Appl Geophys 172(10):2917–2929

    Article  Google Scholar 

  • Liu G, Becker A (1992) Evaluation of terrain effects in AEM surveys using the boundary element method. Geophysics 57:272–278

    Article  Google Scholar 

  • Liu JH, Wang ZW, Zhu S, Weng AH, Xia AY (2005) The geophysical exploration about exhausted area and sinking area in coal mine. J Chin Coal Soc 30(6):715–719

    Google Scholar 

  • Munkholm MS, Auken E (1996) Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments. J Environ Eng Geophys 1(2):119–127

    Article  Google Scholar 

  • Nabighian MN (1988) Electromagnetic methods in applied geophysics. Society of Exploration Geophysics.

  • Newman GA, Alumbaugh DL (1995) Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophys Prospect 43(8):1021–1042

    Article  Google Scholar 

  • Ogilvy RD (1986) Topographic distortions of transient electromagnetic anomalies in resistive terrains. Geoexploration 24(1):29–42

    Article  Google Scholar 

  • Orfanos C, Apostolopoulos G (2011) 2D–3D resistivity and microgravity measurements for the detection of an ancient tunnel in the Lavrion area, Greece. Near Surf Geophys 9(5):449–457

    Article  Google Scholar 

  • Qiu N, Chang YJ, He ZX (2006) Comparison of several threshold selection rules of the wavelet denoising on the transient electromagnetic response. Proc, 2nd International Conf on Environmental and Engineering Geophysics: 461–465

  • Raiche A, Sugeng F, Wilson G (2007) Practical 3D EM inversion—the P223F software suite. ASEG Ext Abstr 1:1–5

    Google Scholar 

  • Ramalho E, Carvalho J, Barbosa S, Santos FAM (2009) Using geophysical methods to characterize an abandoned uranium mining site. Portugal J Appl Geophys 67(1):14–33

    Article  Google Scholar 

  • Sasaki Y, Nakazato H (2003) Topographic modelling and correction in frequency-domain airborne electromagnetics. ASEG Ext Abstr 2:1–4. https://doi.org/10.1071/ASEG2003ab153

    Article  Google Scholar 

  • Tang XG, Hu WB, Yan LJ (2011) Topographic effects on long offset transient electromagnetic response. Appl Geophys 8(4):277–284

    Article  Google Scholar 

  • Turner G, Yelf RJ, Hatherly PJ (1989) Coal mining applications of ground radar. Explor Geophys 20(1/2):165–168

    Article  Google Scholar 

  • Wang Y, Ji YJ, Li SY, Lin J, Zhou FD, Yang GH (2013) A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals. Explor Geophys 44:229–237

    Article  Google Scholar 

  • Wang P, Li MX, Yao WH, Su C, Wang Y, Wang Q (2020) Detection of abandoned water-filled mine tunnels using the downhole transient electromagnetic method. Explor Geophys. https://doi.org/10.1080/08123985.2020.1746182

    Article  Google Scholar 

  • Xue GQ, Cheng JL, Zhou NN, Chen WY, Li H (2013) Detection and monitoring of water-filled voids using transient electromagnetic method: a case study in Shanxi, China. Environ Earth Sci 70(5):2263–2270

    Article  Google Scholar 

  • Xue GQ, Hou DY, Qiu WZ (2018) Identification of double-layered water-filled zones using TEM: a case study in China. J Environ Eng Geophys 23(3):297–304

    Article  Google Scholar 

  • Yang R, Zhu X (2012) Research on TEM Signal De-noising of Large-fixed Loop Devices. Proc, International Conf on Electronics, Communications and Control, IEEE Computer Soc, 1081-1084

  • Zeng SH, Hu XY, Li JH, Colin GF, Peter CW, Lu XS, Peng RH (2019) Effects of full transmitting-current waveforms on transient electromagnetics: insights from modeling the Albany graphite deposit. Geophysics 84(4):255–268

    Article  Google Scholar 

  • Zhao LQ, Jia YF (2010) Research of improved fast independent component analysis. Comput Eng Appl 46(27):128–130

    Google Scholar 

  • Zhou NN, Xue GQ, Hou DY, Li H, Chen WY (2017) Short-offset grounded-wire TEM method for efficient detection of mined-out areas in vegetation-covered mountainous coalfields. Explor Geophys 48:374–382

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and editors for their helpful comments. This work was jointly funded by the National Key R&D Program of China (2017YFC0804105), China Postdoctoral Science Foundation (2019M653523), National Natural Science Foundation of China (41974162), Natural Science Youth Fund of Shaanxi (2020JQ-995), and Special Fund Project for Technology Innovation of Tian Di Science & Technology Co., Ltd (2020-TD-QN011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wang, Q., Wang, Y. et al. Detection of Abandoned Coal Mine Goaf in China’s Ordos Basin Using the Transient Electromagnetic Method. Mine Water Environ 40, 415–425 (2021). https://doi.org/10.1007/s10230-020-00724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00724-4

Keywords

Navigation