Skip to main content
Log in

Data Analysis and Key Parameters of Typical Water Hazard Control Engineering in Coal Mines of China

中国煤矿典型水害治理工程的数据分析及关键参数

Datenanalyse und Schlüsselparameter der technischen Bekämpfung typischer Wassereinbruchsgefahren im chinesischen Kohlenbergbau

Análisis de datos y parámetros clave de la ingeniería típica de control de riesgos de agua en minas de carbón de China

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Large-scale efforts to control water hazards require knowledge of relevant grouting theories and recognition of their shortcomings. Relationships between key engineering technical specifications and conventional hydrogeological parameters were defined to guide engineering designs. For regional control of working face projects, the main influential parameters and relationships were obtained by gray correlation and regression analysis. The results showed that fluid loss and water absorption of boreholes are the main determinants of grout volume. When the grouting pressure reaches 2–4 times the hydrostatic pressure, the grout volume can be effectively increased by up to 40%. For water pathway cut-off projects, the general relationship between water inrush and grout quantity was obtained by the theoretical derivation and regression analysis. It was shown that there is a quadratic polynomial relationship between the quantity of grout and the volume of water inrush. These results can be used to plan and optimize large-scale water disaster prevention and control projects and estimate the required investments.

抽象

中国煤矿典型水害治理工程的数据分析及关键参数在中国,煤矿领域的水害注浆防治工程主要分为两类:工作面区域治理和突水通道注浆封堵。水害注浆防治技术需要了解注浆相关理论知识和提高对它们优缺点的认知。研究建立了关键工程技术参数与常规水文地质参数之间的关系,用以指导工程设计。对于工作面区域治理项目,采用灰色关联分析和回归分析确定了主要影响参数及其相互关系。结果显示,钻孔浆液漏失量和吸水率是影响注浆量的主要因素;当注浆压力达到静压的2-4倍时,注浆量可有效提高40%。对于突水通道注浆封堵工程,通过理论推导和回归分析获得了突水量与注浆量的一般关系。结果表明,灌浆量与突水总量服从二次多项式分布。研究结果有助于规划、优化大型水害防治工程和估算工程投入。

Zusammenfassung

Die Bekämpfung von Wassereinbruchsgefahren in chinesischen Kohlenminen durch Verpressen kann in zwei Kategorien unterteilt werden: regionale Kontrolle der Abbaufront, und das Abdichten von Zuflußwegen. Großmaßstäbliche Kontrolle der Wassergefahr benötigt die Kenntnis zutreffender Verpresstheorien und die Erkenntnis ihrer Schwächen. Das Verhältnis zwischen technischen Schlüsseldaten und konventionellen hydrogeologischen Parametern wurde bestimmt, um die Bauentwürfe zu leiten. Für die regionale Kontrolle der Abbaufronten wurden die wichtigsten Parameter und Verhältnisse durch Graykorrelation und Regressionsanalyse bestimmt. Die Ergebnisse zeigen, daß vor allem der Fluidverlust und die Wasserabsorption der Bohrungen das Einpressvolumen bestimmen. Wenn der Einpressdruck das 2–4 fache des hydrostatischen Drucks erreicht, kann das Einpressvolumen um bis zu 40% erhöht werden. Für Projekte der Abdichtung von Zuflußwegen wurde das Verhältnis zwischen Wassereinbruch und der Verpreßmenge durch theoretische Ableitung und Regressionsanalyse erzielt. Es ergab sich, daß zwischen der Verpreßmenge und dem Volumen des Wassereinbruchs eine quadratisch polynome Beziehung besteht. Diese Resultate können für Planung und Optimierung großer Projekte zur Vorkehrung von Wasserkatastrophen, für die Projektkontrolle und für die Einschätzung der Kosten genutzt werden.

Resumen

En las minas de carbón de China, el control de los riesgos de inundación mediante lechada puede dividirse en dos categorías principales: control regional de la cara de trabajo y tecnología de corte de la vía de agua. Los esfuerzos a gran escala para controlar los riesgos de la irrupción de agua requieren el conocimiento de las teorías de lechada relevantes y el reconocimiento de sus deficiencias. Para guiar los diseños ingenieriles, se construyeron las relaciones entre las especificaciones técnicas claves de ingeniería y los parámetros hidrogeológicos convencionales. Para el control regional de los proyectos de la cara de trabajo, los principales parámetros y relaciones influyentes se obtuvieron mediante el análisis de correlación gris y análisis de regresión. Los resultados muestran que la pérdida de líquido y la absorción de agua de los pozos son los que determinan principalmente el volumen de la lechada. Cuando la presión de la lechada alcanza 2–4 veces la presión hidrostática, el volumen de la lechada puede aumentarse efectivamente hasta en un 40%. Para los proyectos de corte de la ruta del agua, la relación general entre la entrada de agua y la cantidad de lechada se obtuvo mediante la derivación teórica y el análisis de regresión. Se demostró que existe una relación polinómica cuadrática entre la cantidad de lechada y el volumen de entrada de agua. Estos resultados pueden usarse para planificar y optimizar proyectos de prevención y control de desastres de agua a gran escala y estimar las inversiones requeridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adel M, Tamotsu M, Ken-ichi T (2012) Field investigation into effectiveness of compaction grouting. J Geotech Geoenviron 138(4):451–460. https://doi.org/10.1061/(asce)gt.1943-5606.0000540

    Article  Google Scholar 

  • Almer EC, Stoel V (2003) Pile foundation improvement by permeation grouting. Proc 3rd Int Spec Conf Grouting Ground Treat. https://doi.org/10.1061/40663(2003)43

    Article  Google Scholar 

  • Cai MF (2002) Rock mechanics and engineering. Science Press, Beijing

    Google Scholar 

  • Dong SN, Wang H, Zhou WF (2018) Design and construction of watertight plugs in permeable karst collapse columns in restoration of flooded mines: a case study at Dongpang Mine. China Int J Min Sci 4(4):44–55. https://doi.org/10.20431/2454-9460.0404005

    Article  Google Scholar 

  • Funehag J, Gustafson G (2008) Design of grouting with silica sol in hard rock-new methods for calculation of penetration length, part I. Tunn Undergr Sp Tech 23(1):1–8. https://doi.org/10.1016/j.tust.2006.12.005

    Article  Google Scholar 

  • Geng P, Zk LU, Ding T, Quan QL, Yan QX (2017) Research on the dynamic process simulation of rock grouting based on particle flow. J Railway Eng Soc 34(3):34–40

    Google Scholar 

  • Grotenhuis RT (2004) Fracture grouting in theory: modeling of fracture grouting in sand. MSc thesis, Delft Univ of Tech

  • Hideki S, Yanlong C, Koichi A (2012) Experimental and numerical investigations of ground deformation using chemical grouting for pipeline foundation. Geotech Geol Eng 30(2):289–297. https://doi.org/10.1007/s10706-011-9467-0

    Article  Google Scholar 

  • Hu WY, Lu HJ (2012) Determination method of key parameters of grouting in water saturated karst-fracture. J Chin Coal Soc 37(4):596–601

    Google Scholar 

  • Li SC, Han WW, Zhang QS, Liu RT, Weng XJ (2010) Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting. Chin J Rock Mech Eng 29(1):1–7. https://doi.org/10.1016/0006-8993(92)90961-8

    Article  Google Scholar 

  • Li P, Niu JL, Liu ZB (2017) Application of grey relevancy theory and regression analysis method in regional grouting transformation. Coal Technol 12:148–150

    Google Scholar 

  • Lohrasb F, Arezou R, Seyyed MA (2016) An experimental study of the effect of cement and chemical grouting on the improvement of the mechanical and hydraulic properties of alluvial formations. Constr Build Mater 126:32–43. https://doi.org/10.1016/j.conbuildmat.2016.09.006

    Article  Google Scholar 

  • Miller EA, Roycrof GA (2004) Compaction grouting test program for liquefaction control. J Geotech Geoenviron 130(4):355–361

    Article  Google Scholar 

  • Nan SH (2010) Technical feasibility of grouting reform for upper part of Ordovician limestone in Xingtai and Handan coal mining areas. Coal Geol Explor 38(3):37–40. https://doi.org/10.1061/(asce)1090-0241(2004)130:4(355)

    Article  Google Scholar 

  • Nikbakhtan B, Ahangari K (2010) Estimation of jet grouting parameters in Shahriar dam. Iran J Chin U Min Technol 20(3):472–477. https://doi.org/10.1016/s1674-5264(09)60228-3

    Article  Google Scholar 

  • State Administration of Coal Mine Safety (2018) Detailed rules for water prevention and control in coal mines. China Coal Industry Publ House, Beijing

    Google Scholar 

  • Song GJ (2016) Study of grouting mechanism in fractured rock mass based on principle of energy dissipation and release. Build Tech Dev 43(8):94–97. https://doi.org/10.3969/j.issn.1001-523X.2016.08.042

    Article  Google Scholar 

  • Vliet MJ (2002) Finite element modeling of fracture grouting by means of discrete fractures. MSc thesis, Delft Univ of Tech

  • Wang W (2012) A study on techniques of roadway-blocking & flow-cutting off under hydrodynamic conditions and capability evaluation of water-blocking segment. MSc Diss, China Coal Research Institute (in Chinese, abstract in English)

  • Wong IH, Poh TY (2000) Effects of jet grouting on adjacent ground and structures. J Geotech Geoenviron 126(3):247–256. https://doi.org/10.1061/(asce)1090-0241(2001)127:12(1076)

    Article  Google Scholar 

  • Wu Q, Zhao SQ, Dong SN (2013) Handbook of coal mine water control. China Coal Industry Publ House, Beijing, pp 707–717

    Google Scholar 

  • Yang YF (2007) Application of compaction grouting method in foundation reinforcement of existing buildings. Highway Automot Appl 120(3):99–101

    Google Scholar 

  • Yang ZB, Dong SN (2018) Key technology of water inrush disaster control under hydrodynamic large channel condition. Coal Sci Technol 46(4):110–116

    Article  Google Scholar 

  • Yeung AT, So STC, Au SK, Lee TK (2011) Laboratory study of feasibility of compaction grouting of soil. Geomech Geoeng 6(1):1–8. https://doi.org/10.1080/17486025.2010.522256

    Article  Google Scholar 

  • Zaidel J, Markham B, Bleiker D (2010) Simulating seepage into mine shafts and tunnels with MODFLOW. Ground Water 48(3):390–400. https://doi.org/10.1111/j.1745-6584.2009.00659.x

    Article  Google Scholar 

  • Zhang SZ, Cui GX (2015) Fluid mechanics. Tsinghua University Press, Beijing, pp 50–55

    Google Scholar 

  • Zhang YC, Dong SN (2013) Mine grouting construction manual. China Coal Industry Publ House, Beijing, pp 305–311

    Google Scholar 

  • Zhang X, Li SC, Zhang QS, Li HY, Wu WD, Liu RT, Lin MY (2010) Filed test of comprehensive treatment for high pressure dynamic grouting. J Chin Coal Soc 35(8):1314–1318

    Google Scholar 

  • Zhang X, Li SC, Zhang QS, Sun KG, Liu RT, Han WW, Yuan XS (2011) Study of key-hole grouting method to harness high pressure water gushing in fractured rock mass. Chin J Rock Mech Eng 30(7):1414–1421

    Google Scholar 

  • Zhang YC, Dong SN, Su JS (2012) Grouting technology. China Coal Industry Publ House, Beijing

    Google Scholar 

  • Zhang WQ, Zhao K, Zhang GB, Dong Y (2015) Prediction of floor failure depth based on grey correlation analysis theory. J Chin Coal Soc 40(1):53–59

    Google Scholar 

  • Zhao TC (2008) Comprehensive control technology of ordovician limestone water in North China. China Coal Industry Publ House, Beijing

    Google Scholar 

  • Zhao QB, Zhao BW, Fu YG (2016) Research on key technology to control Ordovician limestone water disaster on surface region of deep mining depth mine. Coal Sci Technol 44(8):14–20

    Google Scholar 

  • Zhao PF, Zhao Z (2015) Ordovician limestone floor inrush water advance treatment technology with surface horizontal branch borehole grouting. Coal Sci Technol 43(6):122–125

    Google Scholar 

  • Zheng ST (2018) Advanced exploration and control technology of limestone water hazard in coal seam floor in Huainan and Huaibei coalfields. Coal Geol Explor 46(4):142–153

    Google Scholar 

  • Zhu MC (2015) Key technology and equipment of borehole-controlled grouting for highly effective plugging large channel of water inrush. Coal Geol Explor 43(4):55–58

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Grouting Project Department at Xi’an Research Institute of China Coal Technology & Engineering Group (XIANCCTEG) for providing workstations and related data access. This work was supported by the National Key Research and Development Program of China (2017YFC0804102) and the Science & Technology Innovation Fund of XIANCCTEG (Title: Research on mechanism and experiment of aggregate migration in the construction of water blocking wall in water inrush tunnel of coal mine, 2019XAYMS22). We also thank the three anonymous reviewers and the editors, whose valuable suggestions and professionalism greatly improved the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, L., Dong, S., Zhou, W. et al. Data Analysis and Key Parameters of Typical Water Hazard Control Engineering in Coal Mines of China. Mine Water Environ 39, 331–344 (2020). https://doi.org/10.1007/s10230-020-00684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00684-9

Keywords

Navigation