Skip to main content
Log in

Design of a Geomembrane-Laminated Geosynthetic Clay Liner on the Slopes of a Mine Tailings Dam in Emet, Turkey

Planung einer geosynthetischen folieverstärkten Tondichtung für Böschungsbereiche einer bergbaulichen Absetzanlage in Emet, Türkei

Diseño de un revestimiento de arcilla geosintética laminado con geomembrana en las laderas de un dique de relaves en Emet, Turquía

Emet(土耳其)尾矿坝坡面的多层土工膜膨润土垫层设计

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

We evaluated the potential use of a geomembrane-laminated geosynthetic clay liner (GCL) along the slopes of a boric acid tailings dam in Emet, Turkey. Even though a compacted clay liner (CCL) had been used at the bottom of the tailings dam, it was not possible to place a CCL along the slopes of the dam due to their steepness. Triaxial permeability tests were conducted on the base GCL without a geomembrane and the results indicated that although the volumetric flow through a cross section of the GCL was measured to be very low initially, it increased after a while due to the interaction of the bentonite in the GCL and the mine leachate. For this reason, using a geomembrane-laminated GCL along the steep slopes was found to be an appropriate solution. The mechanical properties of the barrier material were evaluated by performing a parametric study, including a slope stability analysis and an anchorage design for the geomembrane-laminated GCL. Based on the results, a geomembrane-laminated GCL with appropriate mechanical and hydraulic properties was chosen.

Zusammenfassung

Bewertet wird der mögliche Einsatz einer geosynthetischen folieverstärkten Tondichtung (GCL) in Böschungsbereichen des Borsäure-Schlammteiches von Emet, Türkei. Im Gegensatz zur Aufstandsfläche des Schlammteiches, die mit einer mineralischen Abdichtung (CCL) versehen wurde, gelang es auf deren Böschungen aufgrund zu steiler Neigungen nicht, eine ebensolche Abdeckung einzubauen. An der mineralischen Basisabdichtung durchgeführte Triaxialtests zeigten, dass sich deren anfänglich geringe Durchflussmengen nach einer gewissen Zeit erhöhten, was auf die Alteration des Bentonits unter Sickerwassereinfluss zurückgeführt wird. Daher erschien die Verwendung einer folieverstärkten Tondichtung in den Böschungsbereichen als geeignete Lösung. Die mechanischen Eigenschaften der Barrierematerialien wurden mittels Parameterstudie bewertet, welche eine Standsicherheitsanalyse sowie eine Einbaurichtlinie für die geosynthetische folieverstärkte Tondichtung (GCL) einschließt. Auf Grundlage der hierbei erzielten Ergebnisse wurde eine GCL mit hinreichenden mechanischen und hydraulischen Eigenschaften ausgewählt.

Resumen

Evaluamos el potencial uso de un revestimiento de arcilla geosintético laminado con geomembrana (GCL) a lo largo de las laderas de un dique de relaves de ácido bórico en Emet, Turquía. A pesar de que se había utilizado un revestimiento de arcilla compactada (CCL) en el fondo de la presa de relaves, no fue posible colocar un CCL a lo largo de las laderas de la presa debido a su inclinación. Se realizaron pruebas de permeabilidad triaxial en GCL sin geomembrana y los resultados indicaron que aunque el flujo volumétrico a través de una sección transversal de GCL se midió inicialmente como muy bajo, aumentó después de un tiempo debido a la interacción de la bentonita en el GCL y el lixiviado de la mina. Por esta razón, el uso de GCL laminado con geomembrana a lo largo de las pendientes pronunciadas era una solución apropiada. Las propiedades mecánicas del material de barrera se evaluaron mediante la realización de un estudio paramétrico, que incluye un análisis de estabilidad de taludes y un diseño de anclaje para GCL laminado con geomembrana. En base a los resultados, se eligió un GCL laminado con geomembrana con propiedades mecánicas e hidráulicas adecuadas.

抽象

评价了沿Emet(土耳其)硼酸尾矿坝坡面铺设多层土工膜膨润土垫层(GCL)的可行性。虽然尾矿坝底已经铺设夯实粘土层(CCL),但急倾斜坡面无法使用CCL。试验了膨润土垫层(GCL)的三轴渗透性能;结果显示,虽然穿过GCL断面的初始容积流很小,但GCL中斑脱土与淋滤液的反应却使容积流很快增大。发现多层土工膜膨润土垫层(GCL)为较好的解决方法。通过坡体稳定性分析和多层土工膜膨润土垫层(GCL)锚固设计,评价了防渗材料的力学性质。据此,确定了多层土工膜膨润土垫层(GCL)的合理力学和水力学性质参数。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ASTM D2435 (2011) Standard test methods for one-dimensional consolidation properties of soils using incremental loading: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D4595 (2011) Standard test method for tensile properties of geotextiles by the wide-width strip method: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D4632 (2015) Standard test method for grab breaking load and elongation of geotextiles: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D4751 (2016) Standard test method for determining apparent opening size of a geotextile: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D5261 (2010) Standard test method for measuring mass per unit area of geotextiles: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D5890 (2011) Standard test method for swell index of clay mineral component of geosynthetic clay liners, West Conshohocken

  • ASTM D5993 (2014) Standard test method for measuring mass per unit of geosynthetic clay liners: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D5994 (2015) Standard test method for measuring core thickness of textured geomembranes: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D6496 (2015) Standard test method for determining average bonding peel strength between top and bottom layers of needle-punched geosynthetic clay liners: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D6528 (2007) Standard test method for consolidated undrained direct simple shear testing of cohesive soils: ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D6766 (2012) Standard test Method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions: ASTM International, West Conshohocken

    Google Scholar 

  • Benson CH, Meer SR (2009) Relative abundance of monovalent and divalent cations and the impact of desiccation on geosynthetic clay liners. J Geotech Geoenviron Eng 135(3):349–358

    Article  Google Scholar 

  • Bouazza A (2002) Geosynthetic clay liners. Geotext Geomembr 20(1):3–17

    Article  Google Scholar 

  • Bouazza A, Gates WP (2014) Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynth Int 21(2):151–167

    Article  Google Scholar 

  • Capper PL, Cassie WF (1976) The mechanics of engineering soils, 6th edit. Halsted Press, New York City

    Google Scholar 

  • Eid HT (2011) Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes. Geotext Geomembr 29:335–344

    Article  Google Scholar 

  • El-Zein A, Rowe RK (2008) Impact on groundwater of concurrent leakage and diffusion of DCM through geomembranes in landfill liners. Geosynth Int 15(1):55–71

    Article  Google Scholar 

  • Gruber J (2008) Stability failure of an mse during a flood and its reconstruction thereafter. Proc, 1st Pan American Geosynthetic Conf, Cancun, Mexico, 768–772

  • Guler E, Avci C, Ozhan HO (2006) Eti Maden İşletmeleri Genel Müdürlüğü, Project Report for Barrier Material for the Tailings Dam of Boric Acid Plant in Emet

  • Heibaum M (2014) Geosynthetics for waterways and flood protection structures-controlling the interaction of water and soil. Geotext Geomembr 42:374–393

    Article  Google Scholar 

  • Hornsey WP, Scheirs J, Gates WP, Bouazza A (2010) The impact of mining solutions/ liquors on geosynthetics. Geotext Geomembr 28(2):191–198

    Article  Google Scholar 

  • Hullings DE, Sansone LJ (1997) Design concerns and performance of geomembrane anchor trenches. Geotext Geomembr 15(4–6):403–417

    Article  Google Scholar 

  • Ishimori H, Katsumi T (2012) Temperature effects on the swelling capacity and barrier performance of geosynthetic clay liners permeated with sodium chloride solutions. Geotext Geomembr 33:25–33

    Article  Google Scholar 

  • Jozefaciuk G, Matyka-Sarzynska D (2006) Effect of acid treatment and alkali treatment on nanopore properties of selected minerals. Clays Clay Miner 54(2):220–229

    Article  Google Scholar 

  • Kang JB, Shackelford CD (2010) Consolidation of a geosynthetic clay liner under isotropic states of stres. J Geotech Geoenviron Eng 136(1):253–259

    Article  Google Scholar 

  • Katsumi T, Onikata M, Hasegawa S, Lin LC, Kondo M, Kamon M (2001) Chemical compatibility of modified bentonite permeated with inorganic chemical solutions. Geoenvironmental Impact Management. Thomas Telford, Geoenvironmental Engineering, Slough, UK, pp 419–424

  • Kelessidis VC, Tsamantaki C, Dalamarinis P (2007) Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl Clay Sci 38(1–2):86–96

    Article  Google Scholar 

  • Koerner RM (2005) Designing with geosynthetics, 5th edit. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Koerner RM, Daniel DE (1995) A suggested methodology for assessing the technical equivalency of GCLs to CCLs. In: Koerner RM, Gartung E, Zanzinger H (eds) Geosynthetic clay liners. Balkema, Rotterdam, pp 73–98

    Google Scholar 

  • Lajevardi SH, Briancon L, Dias D (2014) Experimental studies of the geosynthetic anchorage-effect of geometric parameters and efficiency of anchorages. Geotext Geomembr 42:505–514

    Article  Google Scholar 

  • Lee JM, Shackelford CD (2005) Concentration dependency of the prehydration effect for a geosynthetic clay liner. Soils Found 45(4):27–41

    Article  Google Scholar 

  • Liu Y, Gates WP, Bouazza A (2013) Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotext Geomembr 36(2–4):71–80

    Article  Google Scholar 

  • Liu Y, Bouazza A, Gates WP, Rowe RK (2015) Hydraulic performance of geosynthetic clay Liners to sulfuric acid solutions. Geotext Geomembr 43:14–23

    Article  Google Scholar 

  • Lupo JF, Morrison KF (2007) Geosynthetic design and construction approaches in the mining industry. Geotext Geomembr 25:96–108

    Article  Google Scholar 

  • Mazzieri F, Di Emidio G, Fratalocchi E, Di Sante M, Pasqualini E (2013) Permeation of two GCLs with an acidic metal-rich synthetic leachate. Geotext Geomembr 40:1–11

    Article  Google Scholar 

  • Meer SR, Benson CH (2007) Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers. J Geotech Geoenviron Eng 133(5):550–563

    Article  Google Scholar 

  • Mendes MJA, Touze-Foltz N, Palmeira EM, Pierson P (2010) Influence of structural and material properties of GCLs on interface flow in composite liners due to geomembrane effects. Geosynth Int 17(1):34–47

    Article  Google Scholar 

  • Ozhan HO, Guler E (2013) Use of perforated base pedestal to simulate the gravel subbase in evaluating the internal erosion of geosynthetic clay liners. Geotech Test J 36(3):418–428

    Article  Google Scholar 

  • Ozhan HO, Guler E (2016) Factors affecting failure by internal erosion of geosynthetic clay liners used in fresh water reservoirs. Environ Eng Geosci 22(2):157–169

    Article  Google Scholar 

  • Rossin-Poumier S, Touze-Foltz N, Pantet A (2011) Impact of synthetic leachate and permittivity of GCLs measured by filter press and oedopermeameter. Geotext Geomembr 29(3):211–221

    Article  Google Scholar 

  • Rowe RK (2005) Long-term performance of contaminant barrier Systems. 45th Rankine Lecture Geotech 55(9):631–678

    Google Scholar 

  • Rowe RK, Abdelatty K (2012) Effect of a calcium-rich soil on the performance of an overlying GCL. J Geotech Geoenviron Eng 138(4):423–431

    Article  Google Scholar 

  • Shackelford CD, Sevick GW, Eykholt GR (2010) Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotext Geomembr 28(2):149–162

    Article  Google Scholar 

  • Shan H-Y, Lai Y-J (2002) Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotext Geomembr 20(1):19–38

    Article  Google Scholar 

  • Simpson BE (2000) Evaluation of leachate compatibility to clay soil for three geosynthetic clay liner products. Proc, Advances in Transportation and Geoenvironmental Systems using Geosynthetics. GSP 103, ASCE, Reston, pp 117–128

    Book  Google Scholar 

  • Vangpaisal T, Bouazza A (2004) Gas permeability of partially hydrated geosynthetic clay liners. J Geotech Geoenviron Eng 130(1):93–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support provided by Eti Maden İsletmeleri Genel Mudurlugu. The authors also sincerely thank Prof. Dr. Cem Avci from Bogazici University Civil Engineering Department for making recommendations about the proposed geomembrane-laminated GCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakki O. Ozhan.

Electronic Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozhan, H.O., Guler, E. Design of a Geomembrane-Laminated Geosynthetic Clay Liner on the Slopes of a Mine Tailings Dam in Emet, Turkey. Mine Water Environ 37, 541–551 (2018). https://doi.org/10.1007/s10230-018-0538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-0538-9

Keywords

Navigation