Skip to main content
Log in

The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Fault activation caused by construction, earthquakes, or mining can produce disastrous water-inrush episodes in underground mines. Fault activation is generally caused by stress concentration at the fault tip, so in this study, a computational model of a typical underground stope with a hidden fault was established to quantitatively assess the magnitude of the stress concentration of the stress fields of the fault-tip. Numerical simulation was performed using the extended finite element method and fracture mechanics. Stress intensity factors, which represent the magnitude of the stress concentration, were obtained using the interaction integral method to quantitatively evaluate the tip fields and assess the possibility of fault activation. The mining depth, fluid pressure, fault dip, and fault length were analyzed and the advance of a working face was simulated to determine whether underground mining would cause fault activation.

Zusammenfassung

Störungsaktivierung durch Bautätigkeit, Erdbeben oder Bergbau kann zu verheerenden Wassereinbrüchen in untertägige Bergwerke führen. Störungsaktivierungen werden generell durch Stresskonzentration an der Störungsspitze verursacht. Daher wurde in dieser Studie ein Computermodell eines typischen Stoßes mit einer versteckten Störung aufgebaut, um das Ausmaß der Stresskonzentration des Stressfeldes der Störungsspitze quantitativ zu bewerten. Für die numerische Simulation wurden die Extended Finite Element Methode und die Störungsmechanik benutzt. Stressintensitätsfaktoren, die das Ausmaß der Stresskonzentration repräsentieren, wurden durch die Anwendung der Interaction Integral Methode gewonnen, um die Stressfelder der Störungsspitze quantitativ zu bewerten und die Möglichkeit der Störungsaktivierung. Die Abbautiefe, der Wasserdruck, das Fallen der Störung und die Länge der Störung wurden analysiert und der Abbaufortschritt wurden simuliert, um zu bestimmen, ob der Bergbau eine Störungsaktivierung verursachen würde.

Resumen

La activación de la falla causada por construcción, terremotos o minería puede producir desastrosos episodios de irrupción de agua en las minas subterráneas. La activación de fallas es causada generalmente por la concentración de estrés en la punta de la falla; así en este estudio, se estableció un modelo computacional de una típica mina subterránea con una falla oculta para relevar cuantitativamente la magnitud de la concentración del estres de los campos de estrés de la punta de la falla. Se realizó la simulación numérica usando el método del elemento finito extendido y la mecánica de fractura. Se obtuvieron los factores de intensidad del estrés, que representan la magnitud de la concentración del estrés, usando el método integral de interacción para evaluar cuantitativamente la punta de la falla y analizar la posibilidad de activación de la falla. Se analizaron la profundidad del trabajo minero, la presión del fluido, la longitud y la inmersión de la falla y el avance de la cara de trabajo fue simulado para determinar si la minería subterránea causaría la activación de la falla.

抽象

构造、地震或采矿引起的断层活化可引发灾害性煤矿突水。断层活化往往由断层尖端应力集中引起。建立含有隐伏断层的回采工作面概念模型,定量评价断层尖端应力集中强度。应用扩展有限元和断裂力学方法进行数值分析。应力强度因子代表应力集中,应用交互整合方法定量评价断层尖端应力场和断层活化可能性。采深、液体压力、断层落差、断层延伸长度和回采推进速度被模拟以确定断层是否活化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Gudmundsson (2005)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson TL (1995) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  • Asferg JL, Poulsen PN, Nielsen LO (2007) A consistent partly cracked XFEM element for cohesive crack growth. Int J Numer Meth Eng 72(4):464–485

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  • Bense VF, Van Balen RT (2003) Hydrogeological aspects of fault zones on various scales in the Roer valley rift system. J Geochem Explor 78–79:317–320

    Article  Google Scholar 

  • Bordas S (2003) Extended finite element and level set methods with applications to growth of cracks and biofilms. PhD thesis, Northwestern University, Evanston

    Google Scholar 

  • Bu WK, Mao XB (2009) Research on effect of fault dip on fault activation and water inrush of coal floor. Chin J Rock Mech Eng 28(2):386–394 (In Chinese)

    Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Chen ZH, Hu ZP (2011) Fracture mechanical model and criteria of insidious fault water inrush in coal mines. J Chin Univ Min Technol 40(5):673–677

    Google Scholar 

  • Christophe D, Nicolas M (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Method Eng 48:1741–1760

    Article  Google Scholar 

  • Desroches J, Detournay E, Lenoach B, Papanastasiou P, Pearon JRA., Thiercelin M, Cheng AHD (1994) The crack tip region in hydraulic fracturing. Proc R Soc Lond Ser 447:39–48

    Article  Google Scholar 

  • Detle B (2012) Inrush and mine inundation-a real threat to Australian coal mines? In: Proc. annual conf of the international mine water assoc (IMWA), Bunbury, pp 25–29

  • Detournay S (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4(1):1–11

    Article  Google Scholar 

  • Dolbow J (1999) An extended finite element method with discontinuous enrichment for applied mechanics. Northwestern University, Evanston

    Google Scholar 

  • Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for crack growth with frictional contact. Comput Method Appl Mech 190(51–52): 6825–6846

    Article  Google Scholar 

  • EDI (Economic Development and Innovation) (2012) Fatalities in Queensland coal mines 1882–2012. Department of Employment, The State of Queensland, Australia

    Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–527

    Article  Google Scholar 

  • Garagash G, Detourmay E (2000) The tip region of a fluid-driven fracture in an elastic medium. J Appl Mech 67(1):183–192

    Article  Google Scholar 

  • Goddard JV, Evans JP (1995) Chemical changes and fluid–rock interaction in faults of crystalline thrust sheets. Northwestern Wyoming, USA. J Struct Geol 17:533–547

    Article  Google Scholar 

  • Gudmundsson A (2005) Effects of mechanical layering on the development of normal faults and dykes in Iceland. Geodin Acta 18:11–30

    Article  Google Scholar 

  • Gudmundsson A, Simmenes TH, Larsen B, Philipp SL (2010) Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. J Struct Geol 32:1643–1655

    Article  Google Scholar 

  • Huang H, Mao X, Yao B, Pu H (2012) Numerical simulation on fault water-inrush based on fluid–solid coupling theory. J Coal Sci Eng China 18(3):291–296

    Article  Google Scholar 

  • Kanninen MC, Popelar (1985) Advanced fracture mechanics. Oxford Eng Science Series. Oxford Univ Press, UK

    Google Scholar 

  • Khoei AR (2014) Extended finite element method: theory and applications. Wiley, Chichester

    Book  Google Scholar 

  • Li FZ, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421

    Article  Google Scholar 

  • Li L, Yang T, Liang Z, Zhu W, Tang C (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85:276–288

    Article  Google Scholar 

  • Liang DX, Jiang ZQ, Guan YZ (2015) Field research: measuring water pressure resistance in a fault-induced fracture zone. Mine Water Environ 34:320–328

    Article  Google Scholar 

  • Liu ZJ, Hu YQ (2007) Solid–liquid coupling study on water inrush through faults in coal mining above confined aquifer. J Chin Univ Min Technol 32(10):1046–1050

    Google Scholar 

  • Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171

    Article  Google Scholar 

  • Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl Mech 139 (1): 289–314

    Article  Google Scholar 

  • Mohammadi S (2008) Extended finite element method for fracture analysis of structure. Blackwell Publ, London

    Book  Google Scholar 

  • Motyka J, Bosch AP (1985) Karstic phenomena in calcareous–dolomitic rocks and their influence over the inrushes of water in lead–zinc mines in Olkusz region (South of Poland). Int J Mine Water 4:1–12

    Article  Google Scholar 

  • Nagashima T, Omoto Y, Tani S (2003) Stress intensity factor analysis of interface cracks using XFEM. Int. J Numer Methods Eng 56(8):1151–1173

    Article  Google Scholar 

  • Nicolas M, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  • Nicolas M, John D, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  Google Scholar 

  • Odintsev VN, Miletenko MA (2015) Water inrush in mines as a consequence of spontaneous hydrofracture. J Min Sci 51:423–434

    Article  Google Scholar 

  • Przemysław B (2011) Water hazard assessment in active shafts in Upper Silesian Coal Basin Mines. Mine Water Environ 30:302–311

    Article  Google Scholar 

  • Rapantova N, Swiatosław K, Arnost G, Christian W (2012) Quantitative assessment of mine water sources based on the general mixing equation and multivariate statistics. Mine Water Environ 31:252–265

    Article  Google Scholar 

  • Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 29(1):43–46

    Article  Google Scholar 

  • Sameh WAM, Broder JM (2012) Interpretation of groundwater flow into a fractured aquifer. Int J Geosci 3:357–364

    Article  Google Scholar 

  • Sian L, Victor B, Jenni T (2011) Fault architecture and deformation processes within poorly lithified rift sediments, central Greece. J Struct Geol 33:1554–1568

    Article  Google Scholar 

  • Wang JA, Park HD (2003) Coal mining above a confined aquifer. Int J Rock Mech Min Sci 40:537–555

    Article  Google Scholar 

  • Wu Q, Wang M, Wu X (2004) Investigations of groundwater bursting into coal mine seam floors from fault zones. Int J Rock Mech Min Sci 41:557–571

    Article  Google Scholar 

  • Yau JF, Wang SS (1984) An analysis of interface cracks between dissimilar isotropic materials using conservation integral in elasticity. Eng Fract Mech 20(3):423–432

    Article  Google Scholar 

  • Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360

    Article  Google Scholar 

  • Zhu W, Wei C (2011) Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ Earth Sci 62:43–54

    Article  Google Scholar 

  • Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the China Scholarship Council (CSC) for their financial support. We are also grateful to all the reviewers and editors for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Herrera, J. & Hidalgo, A. The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics. Mine Water Environ 37, 185–195 (2018). https://doi.org/10.1007/s10230-017-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0461-5

Keywords

Navigation