Skip to main content

Advertisement

Log in

The Use of Static and Humidity Cell Tests to Assess the Effectiveness of Coal Waste Desulfurization on Acid Rock Drainage Risk

静态和动态湿度盒试验评价煤矿矸石去硫方法的酸性废水控制效果

Nutzung statischer und Humidity-Cell-Tests für die Bewertung der Effektivität der Entschwefelung von Kohleabfällen hinsichtlich der Bildung saurer Wässer

Uso de ensayos estáticos y con celdas húmedas para determinar la efectividad de la desulfuración de residuos de carbón sobre el riesgo de drenaje ácido de roca

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The environmental benefits of waste desulfurization were evaluated in the Santa Catarina coal field, Brazil. Coal waste from a beneficiation plant was separated into three density fractions, using a two stage process. Characterization of these fractions indicated that the low (D < 2.2 g/cm3) and high (D > 2.7 g/cm3) density fractions were potentially suitable for energy and sulfuric acid production, respectively. The waste fraction of intermediate density (2.2 < D < 2.7 g/cm3) represented 69% of the total mass studied and had a relatively low sulfide content, and it was postulated that it may be suitable for land disposal with minimum risk to the surrounding environment. This hypothesis was tested using laboratory-scale static and kinetic tests, which indicated that although the fraction remained net acid generating, the rate and net amount of metals, salts, and acidity that leached was considerably less than that of the discards before separation. It was concluded that this approach could reduce the amount of waste generated, as well as the associated pollution risk.

抽象

Zusammenfassung

Die Vorteile einer Abfallentschwefelung wurden für das Santa Caterina Kohlevorkommen in Brasilien bewertet. Kohleabfälle einer Aufbereitungsanlage wurden mittels eines zweistufigen Prozesses in drei Dichtefraktionen getrennt. Die Charakterisierung dieser Dichtefraktionen zeigte, das die Fraktionen niedriger (D<2.2 g/cm3) und hoher (D>2.7 g/cm3) Dichte potentiell für die Energie- bzw. Schwefelsäuregewinnung geeignet sind. Die Abfallfraktion mittlerer Dichte (2.2<D<2.7 g/cm3) entsprach 69% der untersuchten Gesamtmasse und besaß einen relativ geringen Sulfidgehalt. Es wurde daher angenommen, dass diese Fraktion mit geringem Risiko für die umgebende Umwelt deponiert werden könnten. Diese Hypothese wurde mit statischen und kinetischen Labortests geprüft. Die Tests ergaben, dass die Fraktion zwar weiterhin eine Netto-Aziditätsproduktion aufwies, aber eine erheblich kleinere als der unfraktionierte Gesamtabfall. Daraus wurde geschlossen, dass mit der Trennung in die Dichtefraktionen sowohl die Abfallmenge als auch das mit dem Abfall verbundene Risiko von Umweltverunreinigungen verringert werden kann.

Resumen

Se evaluaron los beneficios ambientales de la desulfuración de residuos en el campo de carbón Santa Catarina, Brasil. Los residuos de carbón provenientes de una planta de beneficio fueron separados en tres fracciones de distinta densidad, usando un proceso de dos etapas. La caracterización de estas fracciones indicó que las fracciones de baja (D<2,2 g/cm3) y alta (D>2,7 g/cm3) densidad, eran potencialmente generadoras de energía y ácido sulfúrico, respectivamente. La fracción de densidad intermedia (2,2<D<2,7 g/cm3) representaba 69% del total de la masa estudidada y tenía un contenido relativamente bajo de sulfuros por lo que se postuló que era adecuada para su disposición con mínimo riesgo ambiental. Esta hipótesis fue estudiada usando ensayos cinéticos y estáticos a escala de laboratorio los que indicaron que aunque la fracción remanente aún era generadora neta de acidez, la velocidad y la cantidad de metales, sales y acidez que se lixiviaban era considerablemente menor que la que había antes de la separación. Se concluyó que esta aproximación podría reducir la cantidad de residuo generado y del riesgo de polución asociado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharya C, Kar RN, Sukla LB (2001) Bacterial removal of sulphur from three different coals. Fuel 80:2207–2216

    Article  Google Scholar 

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • Amaral Filho JR, Schneider IAH, Brum IAS, Sampaio CH, Miltzarek G, Schneider C (2013) Caracterização de um depósito de rejeitos para o gerenciamento integrado dos resíduos de mineração na região carbonífera de Santa Catarina, Brasil. Rev Esc Minas 66:347–353

    Article  Google Scholar 

  • APHA (American Public Health Assoc) (2005) Standard methods for the examination of water and wastewater, 21st edit, American Public Health Assoc, Washington DC

    Google Scholar 

  • ASTM (2002) ASTM D 2492: standard test method for forms of sulfur in coal. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM (2007a) ASTM D 5744: standard test method for accelerated weathering of solid materials using a modified humidity cell. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM (2007b) ASTM D 3172: standard test method for proximate analysis of coal and coke. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM (American Society for Testing and Material) (2009) ASTM D 3176: standard test method for ultimate analysis of coal and coke. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Barbosa R, Lapa N, Boavida D, Lopes H, Gulyurtlu I, Mendes B (2009) Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes. J Hazard Mater 170:902–909

    Article  Google Scholar 

  • Bell FG, Bullock SET, Hälbich TFJ, Lindsay P (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int J Coal Geol 45:195–216

    Article  Google Scholar 

  • Benzaazoua M, Bussière B, Demers I, Aubertin M, Fried É, Blier A (2008) Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: application to mine Doyon, Quebec, Canada. Miner Eng 21:330–340

    Article  Google Scholar 

  • Bian Z, Inyang HI, Daniels JL, Otto F, Struthers S (2010) Environmental issues from coal mining and their solutions. Min Sci Technol 20:215–223

    Google Scholar 

  • Bouzahzah H, Benzaazoua M, Bussière B, Plante B (2015) ASTM normalized humidity cell kinetic test: protocol improvements for optimal sulfide tailings reactivity. Mine Water Environ 34:242–257

    Article  Google Scholar 

  • Fan G, Zhang D, Wang X (2014) Reduction and utilization of coal mine waste rock in China: a case study in Tiefa coalfield. Resour Conserv Recycl 83:24–33

    Article  Google Scholar 

  • Gomes CJB, Mendes CAB, Costa JFCL (2011) The environmental impact of coal mining: a case study in Brazil’s Sangão watershed. Mine Water Environ 30:159–168

    Article  Google Scholar 

  • Haibin L, Zhenling L (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recycl 54:1331–1340

    Article  Google Scholar 

  • Hesketh AH, Broadhurst JL, Bryan CG, Van Hille RP, Harrison STL (2010) Biokinetic test for the characterisation of AMD generation potential of sulfide mineral wastes. Hydrometallurgy 104:459–464

    Article  Google Scholar 

  • Hilson G (2000) Barriers to implementing cleaner technologies and cleaner production (CP) practices in the mining industry: a case study of the Americas. Miner Eng 13:699–717

    Article  Google Scholar 

  • Hilson G (2003) Defining “cleaner production” and “pollution prevention” in the mining context. Miner Eng 16:305–321

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  • Kazadi Mbamba C, Harrison STL, Franzidis J, Broadhurst JL (2012) Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation. Miner Eng 29:13–21

    Article  Google Scholar 

  • Komnitsas K, Paspaliaris I, Zilberchmidt M, Groudev SN (2001) Environmental impacts at coal waste disposal sites-efficiency of desulfurization technologies. Glob Nest Int J 3:109–116

    Google Scholar 

  • Kontopoulos A (1998) Acid mine drainage control, In: Castro SH, Vergara F, Sanchez MA (eds) Effluent treatment in the mining industry. University of Concepciòn, Concepciòn, pp 57–118

    Google Scholar 

  • Lapakko KA, Antonson DA (2006) Pyrite oxidation rates from humidity cell testing of greenstone rock. In: Barnhisel RI (ed), Proc, 7th International Conf on Acid Rock Drainage (ICARD), American Soc of Mining and Reclamation (ASMR), Lexington, USA, pp 1007–1025

    Google Scholar 

  • Lapakko KA, Trujillo E (2015) Pyrite oxidation rates from laboratory tests on waste rock. Proc, 10th ICARD and IMWA Annual Conf, Santiago, Chile

  • Lengke MF, Davis A, Bucknam C (2010) Improving management of potentially acid generating waste rock. Mine Water Environ 29:29–44

    Article  Google Scholar 

  • Li XG, Ma BG, Xu L, Hu ZW, Wang XG (2006) Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta 441:79–83

    Article  Google Scholar 

  • Li XG, Lv Y, Ma BG, Jian SW, Tan HB (2011) Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresour Technol 102:9783–9787

    Article  Google Scholar 

  • Lundgren DG, Vestal JR, Tabita FR (1972) The microbiology of mine drainage pollution. In: Mitchell R (ed) Water pollution microbiology. Wiley Interscience, New York City, pp 69–88

    Google Scholar 

  • McLellan BC, Corder GD, Giurco D, Green S (2009) Incorporating sustainable development in the design of mineral processing operations—review and analysis of current approaches. J Clean Prod 17:1414–1425

    Article  Google Scholar 

  • Muthuraman M, Namioka T, Yoshikawa K (2010) A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: a thermogravimetric analysis. Fuel Process Technol 91:550–558

    Article  Google Scholar 

  • Reddick JF, Blottnitz H Von, Kothuis B (2008) Cleaner production in the South African coal mining and processing industry: a case study investigation. Int J Coal Prep Util 28:224–236

    Article  Google Scholar 

  • Runkel M, Sturm P (2009) Pyrite roasting, an alternative to sulphur burning. J South African Inst Min Metall 109:491–496

    Google Scholar 

  • Sapsford DJ, Bowell RJ, Dey M, Williams KP (2009) Humidity cell tests for the prediction of acid rock drainage. Miner Eng 22:25–36

    Article  Google Scholar 

  • SIECESC—Sindicato das Indústrias Extratoras de Carvão do Estado de Santa Catarina (2014) http://www.carvaomineral.com.br/conteudo/gm_estatisticas/estatisticas_2014.pdf. Accessed 28 Dec 2015

  • Silva R, Rubio J (2009) Treatment of acid mine drainage (AMD) from coal mines in south Brazil. Int J Coal Prep Util 29:192–202

    Article  Google Scholar 

  • Silveira AN, Silva R, Rubio J (2009) Treatment of acid mine drainage (AMD) in south Brazil. Int J Miner Process 93:103–1095

    Article  Google Scholar 

  • Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2:1785–1803

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR (1978) Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054, Cincinnati

  • US EPA (Environmental Protection Agency) (1994) Acid mine drainage prediction. EPA 530-R-94-036, Washington DC

    Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Coal Network, CNPq, FINEP, CCSA, SATC, CTCL, and SIESESC/ABCM for the support provided for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juarez R. do Amaral Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral Filho, J.R., Weiler, J., Broadhurst, J.L. et al. The Use of Static and Humidity Cell Tests to Assess the Effectiveness of Coal Waste Desulfurization on Acid Rock Drainage Risk. Mine Water Environ 36, 429–435 (2017). https://doi.org/10.1007/s10230-017-0435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0435-7

Keywords

Navigation