Skip to main content
Log in

Assessment of Water Inrush Risk Using the Fuzzy Delphi Analytic Hierarchy Process and Grey Relational Analysis in the Liangzhuang Coal Mine, China

Beurteilung des Risikos von Wassereinbrüchen in der Liangzhuang Coal Mine, China durch die Anwendung von „Fuzzy Delphi Analytic Hierarchy Process“ - und „Grey Relational Analysis“ - Methoden

Relevamiento del riesgo de irrupción de agua usando el proceso jerárquico analítico y de lógica difusa Delphi y análisis relacional de Grey en la mina de carbón Liangzhuang, China

利用模糊德尔菲层次分析法和灰色关联分析法的良庄煤矿(中国)突水危险性评价

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The exploitation of deep coal seams in North China’s coalfields is seriously threatened by water inrush. Water inrush is controlled by multiple factors and its processes are often not amenable to mathematical expression. To predict and prevent water inrush from the underlying Ordovician aquifer during mining of the No. 13 coal seam in the Liangzhuang coal mine, we used an innovative combination of methods to assess the risk of water inrush based on the fuzzy Delphi analytic hierarchy process (FDAHP) and grey relational analysis (GRA). Expert opinions and GRA were applied to obtain the relative importance of each of the major controlling factors, and the total weights of all factors were assigned using FDAHP. This allowed us to develop a risk index map in which the study area was divided into two zones and four subzones based on the risk index.

Zusammenfassung

Der Abbau von tief liegenden Kohleflözen in nordchinesischen Kohlelagerstätten wird durch Wassereinbrüche ernsthaft bedroht. Diese Wassereinbrüche haben ihre Ursachen in einer Vielzahl von Faktoren und sind sehr häufig nicht durch mathematische Berechnungen fassbar. Um Liegendzutritte aus dem unterlagernden ordovizischen Aquifer während des Abbaus des Kohleflözes Nr. 13 im Liangzhaung Kohlebergbau vorherzusagen bzw. zu verhindern, werden innovative Methoden auf der Grundlage des „Fuzzy Delphi Analytic Hierarchy Process“ (FDAHP) und der „Grey Relational Analyse“ (GRA) kombiniert. Expertenwissen und die GRA werden bei der Zuweisung relativen Bedeutung jedes kontrollierenden Faktors einbezogen und unter Verwendung der FDAHP gewichtet. Dieses methodische Vorgehen wird genutzt, um eine Risikoindexkarte zu erstellen, in der das Untersuchungsgebiet in zwei Risiko- und vier Subzonen unterteilt wird.

Resumen

La explotación de vetas profundas de carbón en el los campos de carbón del norte de China está seriamente amenazado por la irrupción de agua. La irrupción de agua es controlada por múltiples factores y sus procesos frecuentemente no son ajustables a una expresión matemática. Para predecir y prevenir la irrupción de agua desde el acuífero subyacente Ordovician durante los procesos mineros en la veta de carbón No. 13 en la mina de carbón Liangzhaung, hemos usado una combinación innovadora de métodos para evaluar el riesgo de irrupción de agua basado en el proceso jerárquico analítico y de lógica difusa Delphi (FDAHP) y el análisis relacional de Grey (GRA). Opiniones expertas y GRA fueron aplicadas para obtener la importancia relativa de cada uno de los mayores factores controlantes y el peso total de todos los factores fueron asignados mediante FDAHP. Esto permitió desarrollar un mapa de índices de riesgo en el cual el área bajo estudio fue dividida en dos zonas y cuatro subzonas. 

摘要

华北型煤田煤层深部开采受底板突水威胁严重。突水机理受多种因素控制且难以用数学模型表达。采用模糊德尔菲层次分析法(FDAHP)与灰色关联分析法(GRA)相结合的方法预测了良庄井田13煤层底板奥灰突水危险性。利用专家意见和灰色关联分析法评价了底板突水主控因素的相对重要性,通过模糊德尔菲层次分析法确定各主控因素权重。建立了研究区突水危险性指数分区,将研究区划分为2个突水危险性分区和4个突水危险性亚区。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chatterjee S, Singh JB, Roy A (2015) A structure-based software reliability allocation using fuzzy analytic hierarchy process. Int J Syst Sci 46(3):513–525. doi:10.1080/00207721.2013.791001

    Article  Google Scholar 

  • Deng J (1982) Control problems of grey systems. Syst Control Lett 1(5):288–294. doi:10.1016/S0167-6911(82)80025-X

    Article  Google Scholar 

  • Deng J (1989) Introduction to grey system theory. J Grey Syst 1(1):1–24

    Google Scholar 

  • Deng J (2005) The primary methods of grey system theory. Huzhong University of Science and Technology Press, Wuhan (in Chinese)

    Google Scholar 

  • Hayaty M, Tavakoli Mohammadi MR, Rezaei A, Shayestehfar MR (2014) Risk assessment and the ranking of metals using FDAHP and TOPSIS. Mine Water Environ 33:157–164. doi:10.1007/s10230-014-0263-y

    Article  Google Scholar 

  • Hoseinie SH, Ataei M, Osanloo M (2009) A new classification system for evaluating rock penetrability. Int J Rock Mech Min Sci 46:1329–1340. doi:10.1016/j.ijrmms.2009.07.002

    Article  Google Scholar 

  • Kaufmann A, Gupta MM (1988) Fuzzy mathematical models in engineering and management science. Elsevier, Amsterdam

    Google Scholar 

  • Li BY (1999) Down three zones in the prediction of the water inrush from coalbed floor aquifer-theory, development and application. J Shandong I Min Technol (Nat Sci) 18(4):11–18 (in Chinese)

    Google Scholar 

  • Liu Q (2009) A discussion on water inrush coefficient. Coal Geol Explor 37(4):34–42. doi:10.3969/j.issn.1001-1986.2009.04.009 (in Chinese)

    Google Scholar 

  • Meng Z, Li G, Xie X (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143–144:51–60. doi:10.1016/j.enggeo.2012.06.004

    Article  Google Scholar 

  • Ministry of Coal Industry (2009) Regulations for mine water prevention and control. Beijing Publ House of Coal Industry, Beijing (in Chinese)

    Google Scholar 

  • National Bureau of Coal Industry of China (2000) Pillar design and mining regulations under buildings, water, rails and major roadways. China Coal Industry Publ House, Beijing (in Chinese)

    Google Scholar 

  • Reza M, Yilmaz O, Reza Y, Mohammad A, Seyed MH (2013) Ranking the sawability of ornamental stone using fuzzy Delphi and multi-criteria decision-making techniques. Int J Rock Mech Min Sci 58:118–126. doi:10.1016/j.ijrmms.2012.09.002

    Google Scholar 

  • Rezaei A, Shayestehfar M, Hassani H, Tavakoli Mohammadi MR (2015) Assessment of metals contamination and their grading by SAW method: a case study in Sarcheshmeh copper complex, Kerman, Iran. Environ Earth Sci 74(4):3191–3205. doi:10.1007/s12665-015-4356-0

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, NYC

    Google Scholar 

  • Shi L, Han J (2004) Floor water-inrush mechanism and prediction. China Univ of Mining and Technology Press, Xu Zhou (in Chinese)

    Google Scholar 

  • Wu Q, Zhou W (2008) Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction. Environ Geol 55(4):245–254. doi:10.1007/s00254-007-1160-5

    Article  Google Scholar 

  • Wu Q, Xie S, Pei Z, Ma J (2007a) A new practical methodology of the coal floor water bursting evaluating III: the application of ANN vulnerable index method based on GIS. J China Coal Soc 32(12):1301–1306. doi:10.13225/j.cnki.jccs.2007.12.017 (in Chinese)

    Google Scholar 

  • Wu Q, Zhang Z, Ma J (2007b) A new practical methodology of the coal floor water bursting evaluating I: the master controlling index system construction. J China Coal Soc 32(1):42–47. doi:10.13225/j.cnki.jccs.2007.01.009 (in Chinese)

    Google Scholar 

  • Wu Q, Zhang Z, Zhang S, Ma J (2007c) A new practical methodology of the coal floor water bursting evaluating II: the vulnerable index method. J China Coal Soc 32(11):1121–1126. doi:10.13225/j.cnki.jccs.2007.11.007 (in Chinese)

    Google Scholar 

  • Wu Q, Wang J, Liu D, Cui F, Liu S (2009) A new practical methodology of the coal floor water bursting evaluating IV: the application of AHP vulnerable index method based on GIS. J China Coal Soc 34(2):233–238. doi:10.13225/j.cnki.jccs.2009.02.025 (in Chinese)

    Google Scholar 

  • Wu Q, Liu Y, Liu D, Zhou W (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44:591–600. doi:10.1007/s00603-011-0146-5

    Article  Google Scholar 

  • Wu Q, Fan S, Zhou W, Liu S (2013) Application of the analytic hierarchy process to assessment of water inrush: a case study for the No. 17 coal seam in the Sanhejian coal mine, China. Mine Water Environ 32:229–238. doi:10.1007/s10230-013-0228-6

    Article  Google Scholar 

  • Xu F, Long R, Xia Y, Xie S (1991) Quantitative assessment and prediction of geological structures in coal mine. J China Coal Soc 16(4):93–102. doi:10.13225/j.cnki.jccs.1991.04.012 (in Chinese)

    Google Scholar 

  • Xu D, Peng S, Xiang S, Liang M (2015) The effects of caving of a coal mine’s immediate roof on floor strata failure and water inrush. Mine Water Environ. doi:10.1007/s10230-015-0368-y

    Google Scholar 

  • Yin S, Wang X, Wu J, Wang G (2010) Grey correlation analysis on the influential factors the hospital medical expenditure. Inf Comput Appl Lect Notes Comput Sci 6377:73–78. doi:10.1007/978-3-642-16167-4_10

    Article  Google Scholar 

  • Yuen KKF (2012) Membership maximization prioritization methods for fuzzy analytic hierarchy process. Fuzzy Optim Decis Making 11(2):113–133. doi:10.1007/s10700-012-9119-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editors and two anonymous reviewers for their careful work and thoughtful suggestions. The authors also thank Dr. Mona Pelkey for her help with this manuscript. We gratefully acknowledge the financial support of the National Natural Science Foundation of China (41572244), the Ministry of Education Research Fund for the doctoral program (20133718110004), the SDUST Research Fund (2012KYTD101), the Taishan Scholars Construction Projects, and the SDUST Graduate Innovation Fund (YC150104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longqing Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 261 kb)

Supplementary material 2 (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Shi, L., Teng, C. et al. Assessment of Water Inrush Risk Using the Fuzzy Delphi Analytic Hierarchy Process and Grey Relational Analysis in the Liangzhuang Coal Mine, China. Mine Water Environ 36, 39–50 (2017). https://doi.org/10.1007/s10230-016-0391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0391-7

Keywords

Navigation