Skip to main content
Log in

Statistical Evaluation of Dependence Between pH, Metal Contaminants, and Flow Rate in the AMD-Affected Smolnik Creek

Statistische Bewertung des Zusammenhangs zwischen pH-Wert, Metallkontaminationen und Durchfluss im AMD-beeinflussten Smolnik-Bach

Evaluación estadística de la dependencia entre pH, metales contaminantes y flujo del AMD en Smolnik Creek

统计分析法评价受酸性矿井水影响的Smolniki河水的pH值与金属污染物对河流量变化的依赖性

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) with a pH of 3.7–4.1 seeps from an abandoned sulphide mine in Smolnik, Slovakia at a flow rate of 5–10 L/s. Metals precipitate as the AMD mixes with the higher pH Smolnik Creek, adversely affecting the stream’s water quality and ecology. Multivariate statistics were used to interpret surface water and sediment quality effects. Factor analysis generated three significant factors that explained 79.9 % of the variance in the data: the pH is indirectly proportional to the concentration of dissolved metals; Fe precipitation is associated with a decrease in Al in the sediment; and increased Cu concentrations are associated with more Zn in the sediment. High rainfall events increase the flow of Smolnik Creek, which ranges from 0.3 to 2.0 m3/s (monitored 2000–2012). Increased flow is associated with a pH increase and precipitation of metals (Fe, Al, Cu, and Zn). The dependence of pH on flow in Smolnik Creek was evaluated using regression analysis, which confirmed the significance of the exponential relationship between pH and flow rate.

Zusammenfassung

Saure Grubenwässer (AMD) mit einem pH-Wert von 3,7-4,1 sickern aus einem stillgelegten Sulfidberwerk in Smolnik, Slowakei, mit einer Rate von 5-10 L/s. Wenn sich die Grubenwässer mit dem Bachwasser, das einen höheren pH-Wert hat, mischen, fallen Metalle aus. Das beeinträchtigt die Wasserqualität und die Ökologie des Baches. Die Effekte in der Wasser- und Sedimentbeschaffenheit wurden mit Hilfe multivariater Statistik interpretiert. Aus der Faktoranalyse ergaben sich 3 signifikante Faktoren, die 79,9 % der Varianz der Daten erklären: (i) Der pH-Wert ist indirekt proportional zur Konzentration der gelösten Metalle, (ii) Eisenausfällung ist mit einer Abnahme von Aluminium im Sediment verbunden und (iii) erhöhte Kupferkonzentrationen sind mit mehr Zink im Sediment verknüpft. Starkregenereignisse erhöhen den Durchfluss im Smolnik-Bach, der zwischen 0,3 und 2,0 m3/s variiert (Beobachtungsreihe 2000-2012). Erhöhter Durchfluss führt zu einem Anstieg des pH-Wertes und der Ausfällung von Metallen (Fe, Al, Cu und Zn). Der Zusammenhang zwischen Durchfluss und pH-Wert im Smulnik-Bach wurde mit einer Regressionsanalyse bewertet, die den exponentiellen Zusammenhang zwischen pH-Wert und Durchflussrate bestätigte.

Resumen

Drenajes ácidos de minas (AMD) con un pH de 3,7-4,1 se filtran desde una mina de sulfuros abandonada en Smolnik, Eslovaquia a un flujo de 5-10 L/s. Los metales precipitan como mezclas a los pHs más altos de Smolnik Creek afectando la calidad del agua de los canales y a la ecología. Estadísticas multivariantes fueron usadas para interpretar los efectos sobre la calidad del agua superficial y de los sedimentos. El análisis de factores generó tres factores significantes que explicaron 79,9 % de la varianza en los datos: el pH es indirectamente proporcional a la concentración de los metales disueltos; la precipitación de Fe está asociada con un descenso en Al en el sedimento y los incrementos de las concentraciones de Cu están asociados con más Zn en el sedimento. Abundantes precipitaciones incrementaron el flujo de Smolnik Creek, con rangos desde 0,3 a 2,0 m3/s (medida entre 2000 y 2012). El incremento de flujo está asociado con el incremento de pH y la precipitación de metales (Fe, Al, Cu y Zn). La dependencia del pH con el flujo en Smolnik Creek fue evaluada usando análisis de regresión lo que confirmó la significancia de la relación exponencial entre pH y flujo.

摘要

pH值为3.7~4.1的酸性矿井水(AMD)以5~10 升/秒的流量从斯洛伐克Smolnik 一个废弃的硫化物采坑中排泄出来。酸性矿井水与pH较高的Smolnik河水混合后产生的金属沉淀影响着河水水质和生态系统。本文利用多元分析法评价了AMD对河水及河底沉积的影响。由因子分析法得到的三个重要因子解释了79.9%的数据变化:河水pH值与溶解金属浓度间接成比例、Fe 沉淀物与河底沉积Al的减少相关、河水Cu浓度增加与河底沉积富Zn程度相关。强降水使Smolnik河流量增加,2000年-2012年监测河流量变化范围为0.3-2.0 m³/s。河流量增加使河水pH值提高、金属离子(Fe、Al、Cu和 Zn)沉淀增加。利用回归分析法评价了Smolnik河水pH值对河流量变化的依赖性,证实河水pH值与河流量指数相关的显著性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adaikpoh EO, Nwajei GE, Ogala JE (2005) Heavy metals concentrations in coal and sediments from river Ekulu in Enugu, Coal City of Nigeria. J Appl Sci Environ Manag 9(3):5–8

    Google Scholar 

  • Akoto O, Bruce TN, Darko G (2008) Heavy metals pollution profiles in streams serving the Owabi reservoir. Afr J Environ Sci Technol 2(11):354–359

    Google Scholar 

  • Ammann AA, Michalke B, Schramel P (2002) Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS. Anal Bioanal Chem 372(3):448–452

    Article  Google Scholar 

  • Anazawa K, Ohmori H (2005) The hydrochemistry of surface waters in Andesitic Volcanic area, Norikura volcano, central Japan. Chemosphere 59(5):605–661

    Article  Google Scholar 

  • Andras P, Nagyova I, Samesova D, Melichova Z (2012) Study of environmental risks at an old spoil dump field. Pol J Environ Stud 21:1529–1538

    Google Scholar 

  • Angelovicova L, Fazekasova D (2013) The effect of heavy metal contamination to the biological and chemical soil properties in mining region of middle Spis (Slovakia). Int J Ecosyst Ecol Sci 3(4):807–812

    Google Scholar 

  • Balintova M, Petrilakova A (2011) Study of ph influence on selective precipitation of heavy metals from acid mine drainage. Chem Eng Trans 25:345–350. doi:10.3303/CET1125058

    Google Scholar 

  • Balintova M, Petrilakova A, Singovszka E (2012) Study of metal ion sorption from acidic solutions. Theor Found Chem Eng 46(6):727–731

    Article  Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression and its applications. Wiley, New York

    Book  Google Scholar 

  • Bem H, Gallorini M, Rizzio E, Krzemin SM (2003) Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environ Int 29(4):423–428. doi:10.1016/S0160-4120(02)00190-3

    Article  Google Scholar 

  • Bhattacharyya GK, Johnson RA (1977) Statistical concepts and methods. Wiley, New York

    Google Scholar 

  • Brown CE (1998) Applied multivariate statistics in geohydrology and relate sciences. Springer, New York, pp 245–261

    Book  Google Scholar 

  • Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    Google Scholar 

  • Cravotta AC (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Appl Geochem 23(2):166–202

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Gupta AK, Gupta SK, Patil RS (2005) Statistical analyses of coastal water quality for a port and harbour region in India. Environ Monit Assess 102:179–200

    Article  Google Scholar 

  • Hakansson K, Karlsson S, Allard B (1989) Effects of pH on the accumulation and redistribution of metals in polluted stream bed sediment. Sci Total Environ 87(88):43–57

    Article  Google Scholar 

  • Hatje V, Bidone ED, Maddock JL (1998) Estimation of the natural and anthropogenic components of heavy metal fluxes in fresh water Sinos river, Rio Grande do Sul state, South Brazil. Environ Technol 19(5):483–487

    Article  Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kotulicova I, Manko P, Kupka D, Kovarik M (2013) The impact of habitat degradation and water contamination on the macroinvertebrate fauna of Smolnik stream. Waste Recycl 17:114–117

    Google Scholar 

  • Kumru M, Bakac M (2003) R-mode factor analysis applied to the distribution of elements in soils from the Aydın Basin, Turkey. J Geochem Explor 77:81–91

    Article  Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872

    Article  Google Scholar 

  • Lintnerova O, Sottnik P, Soltes S (2008) Abandoned Smolnik mine (Slovakia)—a catchment area affected by mining activities. Est J Earth Sci 57:104–110

    Article  Google Scholar 

  • Luptakova A, Spaldon T, Balintova M (2007) Remediation of acid mine drainage by means of biological and chemical methods. Adv Mater Res 20–21:283–286

    Article  Google Scholar 

  • Luptakova A, Macingova E, Apiariova K (2008) The selective precipitation of metals by bacterially produced hydrogen sulphide. Acta Metall Slov 1:149–154

    Google Scholar 

  • Millard SP, Neerchal NK (2001) Environmental statistics with S-PLUS. CRC Press, Boca Raton

    Google Scholar 

  • Mohanty JK, Misra SK, Nayak BB (2001) Sequential leaching of trace elements in coal: a case study from Talcher coalfield, Orissa. J Geol Soc India 58:441–447

    Google Scholar 

  • Murdoch T, Cleo M (eds) (1991) Streamkeeper’s field guide: watershed inventory and stream monitoring methods. Adopt-A-Stream Foundation, Everett

  • Nouri J, Mahvi AH, Jahed GR, Babaei AA (2008) Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ Geol 55(6):1337–1343

    Article  Google Scholar 

  • Petrilakova A, Balintova M, Holub M (2014) Precipitation of heavy metals from acid mine drainage and their geochemical modelling. SSP J Civil Eng 9(1):79–86

    Google Scholar 

  • Safran K (2001) Canadian water quality guidelines for the protection of aquatic life. CCME Water Quality Index 1. 0. User`s manual. Excerpt from publ no. 1299:13. http://www.ccme.ca/assets/pdf/wqi_techrprtfctsht_e.pdf. Accessed Nov 2013

  • Sargaonkar A, Deshpande V (2003) Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ Monit Assess 89:43–67

    Article  Google Scholar 

  • Shahtaheri SJ, Abdollahi M, Golbabaei F, Rahimi- Froushani A, Ghamari F (2008) Monitoring of mandelic acid as a biomarker of environmental and occupational exposures to styrene. Int J Environ Res 2(2):169–176

    Google Scholar 

  • Simeonov V, Stratis J, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124

    Article  Google Scholar 

  • Sottnik P, Dubikova M, Lintnerova O, Rojkovic I, Sucha V, Uhlik P (2002) The links between the physico-chemical character of different mining waste in Slovakia and their environmental impacts. Geol Carpath 53:227–228

    Google Scholar 

  • Spaldon T, Brehuv J, Bobro M, Hanculak J, Sestinova O (2006) Mining development the Spis-Gemer ore-location. Acta Montanist Slov 11:375–379 [in Slovak]

    Google Scholar 

  • Spanos T, Simeonov V, Stratis J, Xristina X (2003) Assessment of water quality for human consumption. Microchim Acta 141:35–40

    Article  Google Scholar 

  • SPSS User Guide (2009) The basics of data management and analysis. The analysis center for teaching and learning. www.fctl.ucf.edu/researchandscholarship/sotl/toolsresources/content/spss_manual.pdf. Accessed April 2011

  • Wei X, Wolfe FA (2013) Minerals and mine drainage. Water Environ Res 85(10):1515–1547

    Article  Google Scholar 

  • Wong CSC, Li XD, Zhang G, Qi SH, Peng XZ (2003) Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos Environ 37(6):767–776

    Article  Google Scholar 

  • www.gnuplot.info. Accessed on 2011–2013

  • www.statsoft.com. Accessed on 2011–2013

  • Yidana SM, Duke OD, Banoeng-Yakubo B (2007) A multivariate statistical analysis of surface water chemistry data—the Ankobra Basin, Ghana. J Manage 86:80–87

    Google Scholar 

  • Yu S, Shang J, Zhao J, Guo H (2003) Factor analysis and dynamics of water quality of the Songhua River Northeast China. Water Air Soil Pollut 144:159–169

    Article  Google Scholar 

  • Zeng X, Rasmussen T (2005) Multivariate statistical characterization of water quality in Lake Lanie. J Environ Qual 34(6):1980–1991

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contract APVV-0252-10 and by the Slovak Grant Agency for Science (Grant 1/0882/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balintova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balintova, M., Singovszka, E., Vodicka, R. et al. Statistical Evaluation of Dependence Between pH, Metal Contaminants, and Flow Rate in the AMD-Affected Smolnik Creek. Mine Water Environ 35, 10–17 (2016). https://doi.org/10.1007/s10230-014-0324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0324-2

Keywords

Navigation