Skip to main content
Log in

Social interactions during the aquatic breeding phase of the family Hynobiidae (Amphibia: Caudata)

  • Review
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

Social animals with a monophasic life cycle exhibit a more complex social system for reproduction than that of other social animals in which the life cycle is biphasic. The family Hynobiidae (Amphibia: Caudata) is phylogenetically basal to most other salamander families, practices external fertilization, and has a biphasic life cycle alternating between aquatic breeding and terrestrial nonbreeding phases. There are many controversial and specific social interactions during the aquatic breeding phase in several of the inspected species of this family when comparing their sexual or social behaviors with those of other animal species. Some papers describing these social interactions have misled us by erroneously referring to phenomena of territoriality, chase, amplexus/midwifing, mating ball formation, scramble competition, and parental care. Especially, I am skeptical of the male’s premating displays (e.g., chase, clasp, snout contact, chin rubbing, tail undulation, smelling, digging) regarded as “courtship” in some papers, except for Ranodon sibiricus that may produce a single large spermatophore, because most of these displays result in the female’s escape from the male. Also, I am skeptical of the behavior of a male, staying near deposited egg sacs, regarded as “parental care” because such a male can be predicted to change easily with other males and not to guard eggs or embryos against predators. Thus, I provide a focal review and correct observations on hynobiid sexual and social behavior by incorporating some unignorable descriptions that do not fit with previous descriptions on aquatic social interactions of this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcorn MA, Deitloff J, Graham SP, Timpe EK (2013) Sexual dimorphism in head shape, relative head width, and body size of Eurycea aquatica and Eurycea cirrigera. J Herpetol 47:321–327

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Anthony CD, Wicknick JA, Jaeger RG (1997) Social interactions in two sympatric salamanders: effectiveness of a highly aggressive strategy. Behaviour 134:71–88

    Article  Google Scholar 

  • Arnold SJ (1977) The evolution of courtship behavior in New World salamanders with some comments on Old World salamandrids. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum Press, New York, pp 141–183

    Chapter  Google Scholar 

  • Bulakhova NA, Berman DI (2014) Male reproductive cycle of the Siberian salamander Salamandrella keyserlingii (Caudata: Hynobiidae) in coastal tundra of the Sea of Okhotsk. Polar Biol 37:123–133

    Article  Google Scholar 

  • Burrowers PA (2000) Parental care and sexual selection in the Puerto Rican cave-dwelling frog, Eleutherodactylus cooki. Herpetologica 56:375–386

    Google Scholar 

  • Candolin U (1999) The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim Behav 58:1261–1267

    Article  PubMed  Google Scholar 

  • Chadwick CS (1940) Identity of prolactin with water drive factor in Triturus viridescens. Proc Soc Exp Biol Med 45:335–337

    Article  CAS  Google Scholar 

  • Chadwick CS (1941) Further observations on the water drive with the lactogenic hormone. J Exp Zool 86:175–187

    Article  CAS  Google Scholar 

  • Chapple DG (2003) Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol Monogr 17:145–180

    Article  Google Scholar 

  • Cooper WE Jr, Vitt LJ (1989) Sexual dimorphism of head and body size in an iguanid lizard: paradoxical results. Am Nat 133:729–735

    Article  Google Scholar 

  • Crews D, Garstka WR (1982) The ecological physiology of a garter snake. Sci Am 247:158–168

    Article  Google Scholar 

  • Crump ML (1995) Parental care. In: Heatwole H, Sullivan BK (eds) Amphibian biology, vol 2, social behaviour. Surrey Beatty and Sons, Chipping Norton, pp 518–567

    Google Scholar 

  • Crump ML (1996) Parental care among the Amphibia. Adv Stud Behav 25:109–144

    Article  Google Scholar 

  • Dewsbury DA (1982) Ejaculate cost and male choice. Am Nat 119:601–610

    Article  Google Scholar 

  • Edenbrow M, Darden SK, Ramnarine IW, Evans JP, James R, Croft DP (2011) Environmental effects on social interaction networks and male reproductive behaviour in guppies, Poecilia reticulate. Anim Behav 81:551–558

    Article  Google Scholar 

  • Elgar MA, Pierce NE (1988) Mating success and fecundity in an ant-tended lycaenid butterfly. In: Clutton-Brock TH (ed) Reproductive success: studies of selection and adaptation in contrasting breeding systems. University of Chicago Press, Chicago, pp 59–75

    Google Scholar 

  • Eom J, Jung YR, Park D (2009) F-series prostaglandin function as sex pheromones in the Korean salamander, Hynobius leechii. Comp Biochem Physiol Part A 154:61–69

    Article  CAS  Google Scholar 

  • Etchison L, Jacquemin SJ, Allen M, Pyron M (2012) Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. Int J Biol 4:163–171

    Google Scholar 

  • Fiumera AC, Porter BA, Looney G, Asmussen MA, Avise JC (2004) Maximizing offspring production while maintaining genetic diversity in supplemental breeding programs of highly fecund managed species. Conserv Biol 18:94–101

    Article  Google Scholar 

  • Forester DC, Thompson KJ (1998) Gauntlet behaviour as a male sexual tactic in the American toad (Amphibia: Bufonidae). Behaviour 135:99–119

    Article  Google Scholar 

  • Gross MR, Shine R (1981) Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35:775–793

    Article  Google Scholar 

  • Hasumi M (1994) Reproductive behavior of the salamander Hynobius nigrescens: monopoly of egg sacs during scramble competition. J Herpetol 28:264–267

    Article  Google Scholar 

  • Hasumi M (1996a) Seasonal fluctuations of female reproductive organs in the salamander Hynobius nigrescens. Herpetologica 52:598–605

    Google Scholar 

  • Hasumi M (1996b) Times required for ovulation, egg sac formation, and ventral gland secretion in the salamander Hynobius nigrescens. Herpetologica 52:605–611

    Google Scholar 

  • Hasumi M (2001a) Sexual behavior in female-biased operational sex ratios in the salamander Hynobius nigrescens. Herpetologica 57:396–406

    Google Scholar 

  • Hasumi M (2001b) Secondary sexual characteristics of the salamander Salamandrella keyserlingii: throat coloration. Herpetol Rev 32:223–225

    Google Scholar 

  • Hasumi M (2007) Prolactin-based “water-drive theory” in migratory salamanders: some disprovable data. Curr Herpetol 26:107–116

    Article  Google Scholar 

  • Hasumi M (2010) Age, body size, and sexual dimorphism in size and shape in Salamandrella keyserlingii (Caudata: Hynobiidae). Evol Biol 37:38–48

    Article  Google Scholar 

  • Hasumi M, Borkin LJ (2012) Age and body size of Salamandrella keyserlingii (Caudata: Hynobiidae): a difference in altitudes, latitudes, and temperatures. Org Divers Evol 12:167–181

    Article  Google Scholar 

  • Hasumi M, Iwasawa H (1990) Seasonal changes in body shape and mass in the salamander, Hynobius nigrescens. J Herpetol 24:113–118

    Article  Google Scholar 

  • Hasumi M, Iwasawa H (1992) Wandering behavior and cutaneous changes in winter-dormant male salamanders (Hynobius nigrescens). Herpetologica 48:279–287

    Google Scholar 

  • Hasumi M, Kanda F (2007) Phenological activity estimated by movement patterns of the Siberian salamander near a fen. Herpetologica 63:163–175

    Article  Google Scholar 

  • Hasumi M, Iwasawa H, Nagahama Y (1990) Seasonal dynamics of reproductive organs in male salamanders of the species Hynobius nigrescens. Copeia 1990:367–377

    Article  Google Scholar 

  • Hasumi M, Iwasawa H, Nagahama Y (1993) Seasonal changes in plasma concentrations of sex steroids in the salamander Hynobius nigrescens. Gen Comp Endocrinol 90:51–57

    Article  CAS  PubMed  Google Scholar 

  • Hasumi M, Sasaki S, Hosoya O, Sato K, Haraguchi H (1997) Intersexual differences and seasonal changes in gonadotropin-producing cells in the salamander Hynobius nigrescens. J Herpetol 31:45–51

    Article  Google Scholar 

  • Hasumi M, Hongorzul T, Terbish K (2009) Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia 2009:46–49

    Article  Google Scholar 

  • Hasumi M, Hongorzul T, Terbish K (2011) Animal species diversity at a land–water ecotone in Mongolia. Limnology 12:37–45

    Article  Google Scholar 

  • Hasumi M, Hongorzul T, Nakagawa M (2014) Aggregation and site tenacity under downed logs in Salamandrella keyserlingii (Caudata: Hynobiidae). Polar Biol 37:459–470

    Article  Google Scholar 

  • Helms Cahan S, Blumstein DT, Sundström L, Liebig J, Griffin A (2002) Social trajectories and the evolution of social behavior. Oikos 96:206–216

    Article  Google Scholar 

  • Holmes WG, Sherman PW (1983) Kin recognition in animals. Am Sci 71:46–55

    Google Scholar 

  • Hou W-S, Chang Y-H, Chuang T-F, Chen C-H (2010) Effect of ecological engineering design on biological motility and habitat environment of Hynobius arisanensis at high altitude areas in Taiwan. Ecol Eng 36:791–798

    Article  Google Scholar 

  • Houck LD, Arnold SJ (2003) Courtship and mating behavior. In: Sever DM (ed) Reproductive biology and phylogeny, vol 1, reproductive biology and phylogeny of Urodela. Science Publishers, Enfield, pp 383–424

    Google Scholar 

  • Houck LD, Verrell PA (2010) Evolution of primary sexual characters in amphibians. In: Leonard JL, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 409–424

    Google Scholar 

  • Houck LD, Woodley SK (1995) Field studies of steroid hormones and male reproductive behaviour in amphibians. In: Heatwole H, Sullivan BK (eds) Amphibian biology, vol 2, social behaviour. Surry Beatty and Sons, New South Wales, pp 677–703

    Google Scholar 

  • Howard RD (1981) Sexual dimorphism in bullfrogs. Ecology 62:303–310

    Article  Google Scholar 

  • Jaeger RG (1981) Dear enemy recognition and the costs of aggression between salamanders. Am Nat 117:962–974

    Article  Google Scholar 

  • Kajiura SM (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environ Biol Fish 61:125–133

    Article  Google Scholar 

  • Kami HG (2004) The biology of the Persian mountain salamander, Batrachuperus persicus (Amphibia, Caudata, Hynobiidae) in Golestan Province, Iran. Asiatic Herpetol Res 10:182–190

    Google Scholar 

  • Kerfoot JR Jr, Schaefer JF (2006) Ecomorphology and habitat utilization of Cottus species. Environ Biol Fish 76:1–13

    Article  Google Scholar 

  • Kim J-K, Kim I-H, Heo J-H, Lee J-H, Ra N-Y, Eom J, Jeong S-M, Lee H-J, Park D (2013) Arginine vasotocin (AVT) triggers courtship behavior without exposure to external stimuli and modulates the olfactory response of male Hynobius leechii salamanders. Zool Sci 30:929–937

    Article  CAS  PubMed  Google Scholar 

  • Komdeur J (2006) Variation in individual investment strategies among social animals. Ethology 112:729–747

    Article  Google Scholar 

  • Kusano T, Inoue M (2011) Adult sex ratio of a population of the Japanese salamander, Hynobius tokyoensis (Caudata: Hynobiidae). Curr Herpetol 30:129–135

    Article  Google Scholar 

  • Kuzmin SL, Thiesmeier B (2001) Mountain salamanders of the genus Ranodon. Advances in amphibian research in the former Soviet Union, vol 6. PENSOFT Publishers, Sofia

  • Lanza B, Vanni S, Nistri A (1998) Salamanders and newts. In: Cogger HG, Zweifel RG (eds) Encyclopedia of reptiles and amphibians, 2nd edn. Academic Press, San Diego, pp 60–75

    Google Scholar 

  • Lee TJ, Speed MP, Stephens PA (2011) Honest signaling and the uses of prey coloration. Am Nat 178:E1–E9

    Article  PubMed  Google Scholar 

  • Lindeman PV (2003) Sexual difference in habitat use of Texas map turtles (Emydidae: Graptemys versa) and its relationship to size dimorphism and diet. Can J Zool 81:1185–1191

    Article  Google Scholar 

  • Linder G, Krest SK, Sparling DW (2003) Amphibian decline: an integrated analysis of multiple stressor effects. Society of Environmental Toxicology and Chemistry (SETAC) Press, Racine

    Google Scholar 

  • Lindström L (2001) Experimental approaches to studying the initial evolution of conspicuous aposematic signalling. Evol Ecol 13:605–618

    Article  Google Scholar 

  • Lofts B (1987) Testicular function. In: Norris DO, Jones RE (eds) Hormones and reproduction in fishes, amphibians, and reptiles. Plenum Press, New York, pp 283–325

    Chapter  Google Scholar 

  • Loher T, Hobden JC (2012) Length and sex effects on the spatial structure of catches of Pacific halibut (Hippoglossus stenolepis) on longline gear. Fish Bull 110:46–51

    Google Scholar 

  • Lüddecke H (1999) Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev Acad Colomb Cienc 23(Suplemento especial):303–316

    Google Scholar 

  • Maher CR, Lott DF (1995) Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim Behav 49:1581–1597

    Article  Google Scholar 

  • Mann T (1984) Spermatophores. Springer-Verlag, Berlin

    Book  Google Scholar 

  • McGraw KJ (2005) The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim Behav 69:757–764

    Article  Google Scholar 

  • Moore FL (1987) Regulation of reproductive behaviors. In: Norris DO, Jones RE (eds) Hormones and reproduction in fishes, amphibians, and reptiles. Plenum Press, New York, pp 505–522

    Chapter  Google Scholar 

  • Moya-Laranõ J, El-Sayyid MET, Fox CW (2007) Smaller beetles are better scramble competitors at cooler temperatures. Biol Lett 3:475–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakamura D (1941) Uber die Lebensweise des japanischen Krallensalamanders, Onychodactylus japonicus (Houttuyn) (in Japanese with German abstract). Botany and Zoology (Tokyo) 9:515–521

    Google Scholar 

  • Nussbaum RA (1985) The evolution of parental care in salamanders. Misc Publ Mus Zool Univ Michigan 169:1–50

    Google Scholar 

  • Nussbaum RA (1987) The evolution of parental care in salamanders: an examination of the safe harbor hypothesis. Res Popul Ecol 29:27–44

    Article  Google Scholar 

  • Obika M, Bagnara JT (1964) Pteridines as pigments in amphibians. Science 143:485–487

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Madsen T (1998) Sexual selection and sperm competition in reptiles. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic Press, San Diego, pp 503–564

    Chapter  Google Scholar 

  • Ostfeld RS (1990) The ecology of territoriality in small mammals. Trends Ecol Evol 5:411–415

    Article  CAS  PubMed  Google Scholar 

  • Paraskiv KP (1953) Semirechensk salamander (in Russian). Izvestiya Akademii Nauk Kazakhskoi SSR Seiya Biologicheskaya 8:47–56

    Google Scholar 

  • Park D (2005) The first observation of breeding of the long-tailed clawed salamander, Onychodactylus fischeri, in the field. Curr Herpetol 24:7–12

    Article  Google Scholar 

  • Park D, Park S-R (2000) Multiple insemination and reproductive biology of Hynobius leechii. J Herpetol 34:594–598

    Article  Google Scholar 

  • Park D, Sung H-C (2006) Male Hynobius leechii (Amphibia: Hynobiidae) discriminate female reproductive states based on chemical cues. Integr Biosci 10:137–143

    Article  Google Scholar 

  • Park D, Lee J-H, Ra N-Y, Eom J (2008) Male salamanders Hynobius leechii respond to water vibrations via the mechanosensory lateral line system. J Herpetol 42:615–625

    Article  Google Scholar 

  • Park S-R, Park D, Yang SY (1996) Courtship, fighting behaviors and sexual dimorphism of the salamander, Hynobius leechii. Korean J Zool 39:437–446

    Google Scholar 

  • Parker GA (1998) Sperm competition and the evolution of ejaculates: towards a theory base. In: Birkhead TR, Møller AP (eds) Sperm competition and sexual selection. Academic Press, San Diego, pp 3–54

    Chapter  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Pough FH, Andrews RM, Cadle JE, Crump ML, Savitzky AH, Wells KD (2001) Herpetology, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Pryke SR, Lawes MJ, Andersson S (2001) Agonistic carotenoid signalling in male red-collared widowbirds: aggression related to the colour signal of both the territory owner and model intruder. Anim Behav 62:695–704

    Article  Google Scholar 

  • Pryke SR, Andersson S, Lawes MJ, Pipera SE (2002) Carotenoid status signaling in captive and wild red-collared widowbirds: independent effects of badge size and color. Behav Ecol 13:622–631

    Article  Google Scholar 

  • Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phyl Evol 61:543–583

    Article  Google Scholar 

  • Reinhard S, Voitel S, Kupfer A (2013) External fertilisation and paternal care in the paedomorphic salamander Siren intermedia Barnes, 1826 (Urodela: Sirenidae). Zool Anz 253:1–5

    Article  Google Scholar 

  • Ridley M (1978) Parental care. Anim Behav 26:904–932

    Article  Google Scholar 

  • Rojas B (2014) Strange parental decisions: fathers of the dyeing poison frog deposit their tadpoles in pools occupied by large cannibals. Behav Ecol Sociobiol 68:551–559

    Article  Google Scholar 

  • Sasaki M (1924) On a Japanese salamander, in Lake Kuttarush, which propagates like the axolotl. J Coll Agric Hokkaido Imp Univ 15:1–36

    Google Scholar 

  • Sato T (1991) Courtship and spawning behavior of the salamander, Hynobius retardatus (in Japanese with English abstract). Bull Obihiro Centennial City Mus 9:15–24

    Google Scholar 

  • Sato T (1992) Reproductive behavior in the Japanese salamander Hynobius retardatus. Jpn J Herpetol 14:184–190

    Google Scholar 

  • Schwagmeyer PL, Woontner SJ (1986) Scramble competition polygyny in thirteen-lined ground squirrels: the relative contributions of overt conflict and competitive mate searching. Behav Ecol Sociobiol 19:359–364

    Article  Google Scholar 

  • Serbinova IA, Solkin VA (1995) Reproduction behavior in the long-tailed salamander (Onychodactylus fischeri Boulenger). Asiatic Herpetol Res 6:114–119

    Google Scholar 

  • Sever DM (1991) Comparative anatomy and phylogeny of the cloacae of salamanders (Amphibia: Caudata). II. Cryptobranchidae, Hynobiidae, and Sirenidae. J Morphol 207:283–301

    Article  Google Scholar 

  • Sever DM (2002) Female sperm storage in amphibians. J Exp Zool 292:165–179

    Article  PubMed  Google Scholar 

  • Sparreboom M (2014) Salamanders of the Old World: the salamanders of Europe, Asia and northern Africa. KNNV Publishing, Zeist

    Book  Google Scholar 

  • Strong DR Jr (1973) Amphipod amplexus, the significance of ecotypic variation. Ecology 54:1383–1388

    Article  Google Scholar 

  • Tago K (1931) Newts and salamanders (in Japanese). Geisou-do, Kyoto

    Google Scholar 

  • Tanaka K (1986) The territorial behavior of Hynobius takedai in the breeding season (Amphibia: Hynobiidae) (in Japanese with English abstract). Jpn J Herpetol 11:173–181

    Google Scholar 

  • Tanaka K (1989) Mating strategy of male Hynobius nebulosus (Amphibia: Hynobiidae). In: Matsui M, Hikida T, Goris RC (eds) Current herpetology in East Asia. Herpetological Society of Japan, Kyoto, pp 437–448

    Google Scholar 

  • Thorn R (1962) Protection of the brood by the male of the salamander Hynobius nebulosus. Copeia 1962:638–640

    Article  Google Scholar 

  • Thorn R (1968) Les salamandres d’Europe, d’Asie, et d’Afrique du Nord. Paul Lechevalier, Paris

    Google Scholar 

  • Thorn R (1994) Courtship behavior, fertilization of eggs, and rearing in captivity of the Semirechensk salamander Ranodon sibiricus Kessler (Amphibia, Caudata). Russ J Herpetol 1:86–90

    Google Scholar 

  • Toll SJ, Jaeger RG, Gillette JR (2000) Socioecology of a terrestrial salamander: females and males as territorial residents and invaders. Copeia 2000:276–281

    Article  Google Scholar 

  • Usuda H (1993) Reproductive behavior of Hynobius nigrescens, with special reference to male midwife behavior (in Japanese with English abstract). Jpn J Herpetol 15:64–70

    Google Scholar 

  • Usuda H (1997) Individual relationship of male aggressive behavior during the reproductive season of Hynobius nigrescens (in Japanese with English abstract). Jpn J Herpetol 17:53–61

    Google Scholar 

  • Verrell PA (1989) The sexual strategies of natural populations of newts and salamanders. Herpetologica 45:265–282

    Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Whittier JM, Crews D (1987) Seasonal reproduction: patterns and control. In: Norris DO, Jones RE (eds) Hormones and reproduction in fishes, amphibians, and reptiles. Plenum Press, New York, pp 385–409

    Chapter  Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Woodley S (2015) Chemosignals, hormones, and amphibian reproduction. Horm Behav 68:3–13

    Article  CAS  PubMed  Google Scholar 

  • Zamudio KR, Chan LM (2008) Alternative reproductive tactics in amphibians. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 300–331

    Chapter  Google Scholar 

Download references

Acknowledgments

I am greatly indebted to L.J. Borkin for providing helpful information about Ranodon sibiricus, M. Kakegawa for permitting me to use his unpublished data, T. Kusano for arguing with me about parental care, D.M. Sever for critically reviewing the manuscript, and H. Tsuji for questioning the term scramble competition (in alphabetical order). Cordial thanks are due to two anonymous reviewers for their criticism.

Conflict of interest

I declare that I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Hasumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasumi, M. Social interactions during the aquatic breeding phase of the family Hynobiidae (Amphibia: Caudata). acta ethol 18, 243–253 (2015). https://doi.org/10.1007/s10211-015-0214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-015-0214-z

Keywords

Navigation