Skip to main content

Advertisement

Log in

Context awareness in healthcare: a systematic literature review

  • Review Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

The incorporation of information and communication technologies has transformed the health field. With the constant miniaturization of embedded devices, the increase in human–computer interactions and their ubiquity has increased the possibilities of intervention in this field of study. One of the fundamental characteristics of ubiquitous computing applied to health is context awareness. The use of context awareness in healthcare faces many challenges, which has led to the search for several solutions in the integration of sensors from different origins, in data fusion and reasoning algorithms, among others. This paper aims to explore the recent literature related to the use of context awareness in health, defining the taxonomy and identifying challenges and open questions. The method for achieving these objectives is to use the systematic literature review approach, which is characterized by research questions that guide the definition of a taxonomy and the search for challenges in the area. As a result, we have reviewed around 4000 scientific studies published over the last ten years, selecting and researching the most meaningful, in-depth approaches in the field of context-aware health, resulting in a final corpus of 38 articles. We have developed an up-to-date taxonomy that classifies context awareness in the field of health, as well as identifying open questions and issues that can guide future work in the area. These results, unified in one paper, contribute to a significant degree of coverage of the use of context-aware data in health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://dl.acm.org/.

  2. https://scholar.google.com.br/.

  3. https://ieeexplore.ieee.org/Xplore/home.jsp.

  4. http://digital-library.theiet.org/.

  5. http://jmirpublications.com/.

  6. https://www.ncbi.nlm.nih.gov/pubmed/.

  7. https://www.sciencedirect.com/.

  8. https://link.springer.com/.

  9. http://isiknowledge.com.

  10. https://onlinelibrary.wiley.com/.

References

  1. Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., Nilashi, M., Alizadeh, M.: The application of Internet of Things in healthcare: A systematic literature review and classification. Universal Access in the Information Society pp. 1–33 (2018). https://doi.org/10.1007/s10209-018-0618-4

    Article  Google Scholar 

  2. Al-Neyadi, F., Abawajy, J.H.: Context-based e-health system access control mechanism. In: Park, J.H. and Zhan, J. and Lee, C. and Wang, G. and Kim, T. and Teo, S. (eds.), Communications in Computer and Information Science, vol. 36, pp. 68–77 (2009). https://doi.org/10.1007/978-3-642-02633-1_9

    Chapter  Google Scholar 

  3. Alirezaie, M., Renoux, J., Köckemann, U., Kristoffersson, A., Karlsson, L., Blomqvist, E., Tsiftes, N., Voigt, T., Loutfi, A.: An ontology-based context-aware system for smart homes: E-care@home. Sensors (Switzerland) 17(7), 1–23 (2017). https://doi.org/10.3390/s17071586

    Article  Google Scholar 

  4. Alshurafa, N., Xu, W., Liu, J.J., Huang, M.C., Mortazavi, B., Roberts, C.K., Sarrafzadeh, M.: Designing a robust activity recognition framework for health and exergaming using wearable sensors. IEEE J. Biomed. Health Inform. 18(5), 1636–1646 (2014). https://doi.org/10.1109/JBHI.2013.2287504

    Article  Google Scholar 

  5. Amin, R., Islam, S.H., Biswas, G.P., Khan, M.K., Kumar, N.: A robust and anonymous patient monitoring system using wireless medical sensor networks. Future Gener. Comput. Syst. 80, 483–495 (2018). https://doi.org/10.1016/j.future.2016.05.032

    Article  Google Scholar 

  6. Azimi, I., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Internet of things for remote elderly monitoring: a study from user-centered perspective. J. Ambient Intell. Humaniz. Comput. 8(2), 273–289 (2017). https://doi.org/10.1007/s12652-016-0387-y

    Article  Google Scholar 

  7. Bae, W.D., Alkobaisi, S., Narayanappa, S., Liu, C.C.: A mobile data analysis framework for environmental health decision support. In: 2012 Ninth International Conference on Information Technology—New Generations, pp. 155–161 (2012). https://doi.org/10.1109/ITNG.2012.31

  8. Baloch, Z., Shaikh, F.K., Unar, M.A.: A context-aware data fusion approach for health-iot. Int. J. Inf. Technol. 10(3), 241–245 (2018). https://doi.org/10.1007/s41870-018-0116-1

    Article  Google Scholar 

  9. Beattie, M., Zheng, H., Nugent, C., McCullagh, P.: Self-management of COPD: a technology driven paradigm. In: Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication, pp. 53:1–53:8 (2014). https://doi.org/10.1145/2557977.2558084

  10. Bobek, S., Nalepa, G.J.: Uncertainty handling in rule-based mobile context-aware systems. Pervasive Mob. Comput. 39, 159–179 (2017). https://doi.org/10.1016/j.pmcj.2016.09.004

    Article  Google Scholar 

  11. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007). https://doi.org/10.1016/j.jss.2006.07.009

    Article  Google Scholar 

  12. Cherkaoui, E.H., Agoulmine, N.: Context-Aware mobility management with WiFi/3G offloading for ehealth WBANs. In: 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services, Healthcom 2014, pp. 472–476 (2015). https://doi.org/10.1109/HealthCom.2014.7001888

  13. Chiang, T.C., Liang, W.H.: A context-aware interactive health care system based on ontology and fuzzy inference. J. Med. Syst. 39(9), 105 (2015). https://doi.org/10.1007/s10916-015-0287-2

    Article  Google Scholar 

  14. Čolaković, A., Hadžialić, M.: Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput. Netw. 144, 17–39 (2018). https://doi.org/10.1016/j.comnet.2018.07.017

    Article  Google Scholar 

  15. da Costa, C.A., Yamin, A.C., Geyer, C.F.R.: Toward a general software infrastructure for ubiquitous computing. IEEE Pervasive Comput. 7(1), 64–73 (2008). https://doi.org/10.1109/MPRV.2008.21

    Article  Google Scholar 

  16. De La Iglesia, D.H., De Paz, J.F., González, G.V., Barriuso, A.L., Bajo, J.: A context-aware indoor air quality system for sudden infant death syndrome prevention. Sensors (Switzerland) 18(3), 757 (2018). https://doi.org/10.3390/s18030757

    Article  Google Scholar 

  17. Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 19(3), 573–599 (2015). https://doi.org/10.1007/s00779-015-0856-x

    Article  Google Scholar 

  18. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2–4), 97–166 (2001). https://doi.org/10.1207/S15327051HCI16234_02

    Article  Google Scholar 

  19. Dobrescu, R.: Human-Centered Architecture of a Medical Cyber-Physical System. Iwocps. Hpc. Pub, Ro (2015)

    Google Scholar 

  20. ElHelw, M., Pansiot, J., McIlwraith, D., Ali, R., Lo, B., Atallah, L.: An integrated multi-sensing framework for pervasive healthcare monitoring. In: Proceedings of the 3d International ICST Conference on Pervasive Computing Technologies for Healthcare, pp. 1–7 (2009). https://doi.org/10.4108/ICST.PERVASIVEHEALTH2009.6038

  21. Elmalaki, S., Wanner, L., Srivastava, M.: CAreDroid. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 386–399 (2015). https://doi.org/10.1145/2789168.2790108

  22. Esposito, M., Minutolo, A., Megna, R., Forastiere, M., Magliulo, M., De Pietro, G.: A smart mobile, self-configuring, context-aware architecture for personal health monitoring. Eng. Appl. Artif. Intell. 67, 136–156 (2018). https://doi.org/10.1016/j.engappai.2017.09.019

    Article  Google Scholar 

  23. Firouzi, F., Rahmani, A.M., Mankodiya, K., Badaroglu, M., Merrett, G.V., Wong, P., Farahani, B.: Internet-of-things and big data for smarter healthcare: from device to architecture, applications and analytics. Future Gener. Comput. Syst. 78, 583–586 (2018). https://doi.org/10.1016/j.future.2017.09.016

    Article  Google Scholar 

  24. Forkan, A., Khalil, I., Ibaida, A., Tari, Z.: BDCaM: big data for context-aware monitoring—a personalized knowledge discovery framework for assisted healthcare. IN: IEEE Transactions on Cloud Computing pp. 1–1 (2015). https://doi.org/10.1109/TCC.2015.2440269

    Article  Google Scholar 

  25. Garrido, J.E., Penichet, V.M.R., Lozano, M.D.: A novel context-aware system to support healthcare environments. Universal Access in the Information Society (2018). https://doi.org/10.1007/s10209-018-0623-7

    Article  Google Scholar 

  26. Gomes, B., Muniz, L., da Silva e Silva, F., Ríos, L., Endler, M.: A comprehensive and scalable middleware for Ambient Assisted Living based on cloud computing and Internet of Things. Concurrency and Computation: Practice and Experience 29(11), e4043 (2017). https://doi.org/10.1002/cpe.4043

    Article  Google Scholar 

  27. HameurLaine, A., Abdelaziz, K., Roose, P., Kholladi, M.K.: Ontology and rules-based model to reason on useful contextual information for providing appropriate services in U-healthcare systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII, pp. 301–310. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-10422-5_32

    Chapter  Google Scholar 

  28. Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What do we need to build explainable AI systems for the medical domain? (2017). https://doi.org/10.3109/14015439.2012.660499

    Article  Google Scholar 

  29. Holzinger, A., Schaupp, K., Eder-Halbedl, W.: An investigation on acceptance of ubiquitous devices for the elderly in a geriatric hospital environment: using the example of person tracking. In: Lecture Notes in Computer Science, vol. 5105, pp. 22–29. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-70540-6_3

  30. Holzinger, A., Searle, G., Wernbacher, M.: The effect of previous exposure to technology on acceptance and its importance in usability and accessibility engineering. Univers. Access Inf. Soc. 10(3), 245–260 (2011). https://doi.org/10.1007/s10209-010-0212-x

    Article  Google Scholar 

  31. Jung, Y.: Hybrid-aware model for senior wellness service in smart home. Sensors (Switzerland) 17(5) (2017). https://doi.org/10.3390/s17051182

    Article  Google Scholar 

  32. Kitchenham, B.: Procedures for performing systematic reviews. Keele University, Keele, UK, TR/SE-0401, pp. 1–26 (2004)

  33. Komnakos, D., Vouyioukas, D., Maglogiannis, I., Constantinou, P.: Feasibility study of a joint e-health mobile high-speed and wireless sensor system. In: Proceedings of the 1st ACM International Conference on Pervasive Technologies Related to Assistive Environments, p. 1 (2008). https://doi.org/10.1145/1389586.1389615

  34. Kuijs, H., Rosencrantz, C., Reich, C.: A Context-aware, intelligent and flexible ambient assisted living platform architecture. In: Lee, Y., Westphall, C. (eds.) Cloud Computing—International Conference on Cloud Computing GRIDs and Virtualization, pp. 70–76. IARIA (2015)

  35. Machado, A., Pernas, A.M., Augustin, I., Thom, L.H., Wives, L.K., de Oliveira, J.P.: Situation-awareness as a key for proactive actions in ambient assisted living. In: Hammoudi, S., Maciaszek, L,, Cordeiro, J., Dietz, J. (eds.) Proceedings of the 15th International Conference on Enterprise Information Systems, pp. 418–426. ESEO Grp.; Inst Syst & Technologies Informat., Control & Commun.; Assoc. Advancement Artificial Intelligence; IEICE Special Interest Grp. Software Interprise Modelling; ACM Special Interest Grp. Management Informat Syst.; ACM Special Interest Grp. Comp. Human Inte. (2013). https://doi.org/10.5220/0004418004180426

  36. Matthew-Maich, N., Harris, L., Ploeg, J., Markle-Reid, M., Valaitis, R., Ibrahim, S., Gafni, A., Isaacs, S.: Designing, implementing, and evaluating mobile health technologies for managing chronic conditions in older adults: a scoping review. JMIR mHealth and uHealth 4(2), e29 (2016). https://doi.org/10.2196/mhealth.5127

    Article  Google Scholar 

  37. Mcheick, H.: Modeling context aware features for pervasive computing. Proc. Comput. Sci. 37, 135–142 (2014). https://doi.org/10.1016/j.procs.2014.08.022

    Article  Google Scholar 

  38. Michalakis, K., Caridakis, G.: IoT contextual factors on healthcare. Adv. Exp. Med. Biol. 989, 189–200 (2017). https://doi.org/10.1007/978-3-319-57348-9_16

    Article  Google Scholar 

  39. Mileo, A., Merico, D., Pinardi, S., Bisiani, R.: A logical approach to home healthcare with intelligent sensor-network support. Comput. J. 53(8), 1257–1276 (2010). https://doi.org/10.1093/comjnl/bxn074

    Article  Google Scholar 

  40. Mitchell, M., Meyers, C., Wang, A.I.A., Tyson, G.: ContextProvider: context awareness for medical monitoring applications. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2011, pp. 5244–5247 (2011).https://doi.org/10.1109/IEMBS.2011.6091297

  41. Mnatsakanyan, Z.R., Burkom, H.S., Hashemian, M.R., Coletta, M.A.: Distributed information fusion models for regional public health surveillance. Inf. Fusion 13(2), 129–136 (2012). https://doi.org/10.1016/j.inffus.2010.12.002

    Article  Google Scholar 

  42. Montori, F., Bedogni, L., Felice, M.D., Bononi, L.: Machine-to-machine wireless communication technologies for the internet of things: taxonomy, comparison and open issues. Pervasive Mob. Comput. 50, 56–81 (2018). https://doi.org/10.1016/j.pmcj.2018.08.002

    Article  Google Scholar 

  43. Mshali, H., Lemlouma, T., Magoni, D.: Adaptive monitoring system for e-health smart homes. Pervasive Mob. Comput. 43, 1–19 (2018). https://doi.org/10.1016/j.pmcj.2017.11.001

    Article  Google Scholar 

  44. Mshali, H., Lemlouma, T., Moloney, M., Magoni, D.: A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 66, 26–56 (2018). https://doi.org/10.1016/j.ergon.2018.02.002

    Article  Google Scholar 

  45. Nava-Muñoz, S., Morán, A.L.: CANoE: a context-aware notification model to support the care of older adults in a nursing home. Sensors 12(12), 11477–11504 (2012). https://doi.org/10.3390/s120911477

    Article  Google Scholar 

  46. Newcombe, L., Yang, P., Carter, C., Hanneghan, M.: Internet of Things enabled technologies for behaviour analytics in elderly person care: a survey. In: Proceedings—2017 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol. 2018-Jan., pp. 863–870 (2018). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.133

  47. O’Donoghue, J., Herbert, J.: Data management within mHealth environments. J. Data Inf. Qual. 4(1), 1–20 (2012). https://doi.org/10.1145/2378016.2378021

    Article  Google Scholar 

  48. Pasquier, T., Singh, J., Powles, J., Eyers, D., Seltzer, M., Bacon, J.: Data provenance to audit compliance with privacy policy in the Internet of Things. Pers. Ubiquitous Comput. 22(2), 333–344 (2018). https://doi.org/10.1007/s00779-017-1067-4

    Article  Google Scholar 

  49. Petticrew, M., Roberts, H.: Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell, Malden, MA (2006). https://doi.org/10.1027/1016-9040.11.3.244

  50. Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L.: Advanced Internet of Things for personalised healthcare systems: a survey. Pervasive Mob. Comput. 41, 132–149 (2017). https://doi.org/10.1016/j.pmcj.2017.06.018

    Article  Google Scholar 

  51. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Future Gener. Comput. Syst. 78, 641–658 (2018). https://doi.org/10.1016/j.future.2017.02.014

    Article  Google Scholar 

  52. Rault, T., Bouabdallah, A., Challal, Y., Marin, F.: A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive Mob. Comput. 37, 23–44 (2017). https://doi.org/10.1016/j.pmcj.2016.08.003

    Article  Google Scholar 

  53. Rey, E., Jain, A., Abdullah, S., Choudhury, T., Erickson, D.: Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol. Pers. Ubiquitous Comput. 22(4), 867–877 (2018). https://doi.org/10.1007/s00779-018-1164-z

    Article  Google Scholar 

  54. Röcker, C., Ziefle, M., Holzinger, A.: From Computer Innovation to Human Integration: Current Trends and Challenges for Pervasive HealthTechnologies, pp. 1–17. Springer-Verlag, Berlin (2014)

    Google Scholar 

  55. Roehrs, A., da Costa, C.A., da Rosa Righi, R., de Oliveira, K.S.F.: Personal health records: a systematic literature review. J. Med. Internet Res. 19(1) (2017). https://doi.org/10.2196/jmir.5876

    Article  Google Scholar 

  56. Sanchez-pi, N., Carb, J.: An evaluation method for context-aware systems in U-Health. In: 3rd International Symposium on Ambient Intelligence, pp. 219–226 (2012). https://doi.org/10.1007/978-3-642-28783-1_28

    Chapter  Google Scholar 

  57. Sannino, G., De Pietro, G.: A mobile system for real-time context-aware monitoring of patients’ health and fainting. Int. J. Data Min. Bioinform. 10(4), 407–423 (2014). https://doi.org/10.1504/IJDMB.2014.064891

    Article  Google Scholar 

  58. Santos, D.F., Gorgônio, K.C., Perkusich, A., Almeida, H.O.: A standard-based and context-aware architecture for personal healthcare smart gateways. J. Med. Syst. 40(10) (2016). https://doi.org/10.1007/s10916-016-0580-8

  59. gu Song, J., Jung, S., Kang, B.H., Hwang, D.J., Kim, S.: Design of context-aware middleware for mobile healthcare services. J. Chin. Inst. Eng. 35(5), 535–545 (2012). https://doi.org/10.1080/02533839.2012.679063

    Article  Google Scholar 

  60. Tavares, J., Barbosa, J., Cardoso, I., Costa, C., Yamin, A., Real, R.: Hefestos: an intelligent system applied to ubiquitous accessibility. Univ. Access Inf. Soc. 15(4), 589–607 (2016). https://doi.org/10.1007/s10209-015-0423-2

    Article  Google Scholar 

  61. Thomas, A., Moore, P., Evans, C., Shah, H., Sharma, M., Mount, S., Xhafa, F., Pham, H., Barolli, L., Patel, A., Wilcox, A., Chapman, C., Chima, P.: Smart care spaces: pervasive sensing technologies for at-home care. Int. J. Ad Hoc Ubiquitous Comput. 16(4), 268 (2014). https://doi.org/10.1504/IJAHUC.2014.064862

    Article  Google Scholar 

  62. Trebatoski, M., Davies, J., Revere, D., Dobbs, D.: Methods for leveraging a health information exchange for public health: lessons learned from the NW-PHIE experience. Online J. Public Health Inform. 2(2), 1–15 (2010). https://doi.org/10.5210/ojphi.v2i2.3211

    Article  Google Scholar 

  63. Wetzels, M., Ayoola, I., Bogers, S., Peters, P., Chen, W., Feijs, L.: Consume: a privacy-preserving authorisation and authentication service for connecting with health and wellbeing APIs. Pervasive Mob. Comput. 43, 20–26 (2018). https://doi.org/10.1016/j.pmcj.2017.11.002

    Article  Google Scholar 

  64. Zerkouk, M., Cavalcante, P., Mhamed, A., Boudy, J., Messabih, B.: Behavior and capability based access control model for personalized telehealthcare assistance. Mob. Netw. Appl. 19(3), 392–403 (2014). https://doi.org/10.1007/s11036-014-0516-9

    Article  Google Scholar 

  65. Zhang, H., Ali Babar, M.: Systematic reviews in software engineering: an empirical investigation. Inf. Softw. Technol. 55(7), 1341–1354 (2013). https://doi.org/10.1016/j.infsof.2012.09.008

    Article  Google Scholar 

  66. Ziefle, M., Rocker, C., Holzinger, A.: Medical technology in smart homes: exploring the user’s perspective on privacy, intimacy and trust. In: 2011 IEEE 35th Annual Computer Software and Applications Conference Workshops, pp. 410–415. IEEE (2011).https://doi.org/10.1109/COMPSACW.2011.75

Download references

Acknowledgements

This work was supported in part by the Coordination for the Improvement in Higher Education Personnel—CAPES (Finance Code 001), the National Council for Scientific and Technological Development—CNPq (Grant Numbers 303640 / 2017-0 and 405354 / 2016-9), and the Federal Institute of Education, Science and Technology—IFRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano André da Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubert, L.C., da Costa, C.A. & Righi, R.R. Context awareness in healthcare: a systematic literature review. Univ Access Inf Soc 19, 245–259 (2020). https://doi.org/10.1007/s10209-019-00664-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-019-00664-z

Keywords

Navigation