Skip to main content
Log in

A Common Variable Minimax Theorem for Graphs

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \({\mathcal {G}} = \{G_1 = (V, E_1), \ldots , G_m = (V, E_m)\}\) be a collection of m graphs defined on a common set of vertices V but with different edge sets \(E_1, \ldots , E_m\). Informally, a function \(f :V \rightarrow {\mathbb {R}}\) is smooth with respect to \(G_k = (V,E_k)\) if \(f(u) \sim f(v)\) whenever \((u, v) \in E_k\). We study the problem of understanding whether there exists a nonconstant function that is smooth with respect to all graphs in \({\mathcal {G}}\), simultaneously, and how to find it if it exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, NIPS 14, pp. 585-591 (2002)

    Google Scholar 

  2. X. Cai, F. Nie, H. Huang, and F. Kamangar, Heterogeneous image feature integration via multi-modal spectral clustering, in Proc. Comput. Vis. Pattern Recognit., 2011.

  3. R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), p. 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Coifman, S. Lafon, Geometric harmonics: a novel tool for multiscale outof-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21(1), p. 31–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Dong, P. Frossard, P. Vandergheynst, N. Nefedov, N. Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds. IEEE Transactions on signal processing, 62, p. 905–918, (2013).

  6. J. Emme, P. Hubert, Limit laws for random matrix products, Mathematical Research Letters 25 (2018), p.1205 – 1212

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Eynard, A. Kovnatsky, M. Bronstein, K. Glashoff, A. Bronstein, Multimodal manifold analysis by simultaneous diagonalization of laplacians. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, p. 2505–2517 (2015).

    Article  Google Scholar 

  8. J. Liu, C. Wang, J. Gao, and J. Han, Multi-view clustering via joint nonnegative matrix factorization, in Proc. SDM, 2013.

  9. A. Kumar, P. Rai, and H. Daume III, Co-regularized multi-view spectral clustering, in Proc. Neural Inf. Process. Syst., 2011.

  10. R. R. Lederman, R. Talmon, Learning the geometry of common latent variables using alternating-diffusion. Appl. Comput. Harmon. Anal. 44(3), p. 509–536 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Ma and C.-H. Lee, Unsupervised anchor shot detection using multi-modal spectral clustering, in Proc. ICASSP, 2008.

  12. W. Tang, Z. Lu, and I. Dhillon, Clustering with multiple graphs, in Proc. Data Mining, 2009.

  13. O. Yair, F. Dietrich, R. Mulayoff, R. Talmon, I. Kevrekidis, Spectral Discovery of Jointly Smooth Features for Multimodal Data, arXiv:2004.04386

  14. A. Yeredor, Non-orthogonal joint diagonalization in the leastsquares sense with application in blind source separation, Trans. Signal Proc., vol. 50, no. 7, pp. 1545-1553, 2002.

    Article  MATH  Google Scholar 

  15. Richard Sinkhorn and Paul Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967), 343–348.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas F. Marshall.

Additional information

Communicated by Pencho Petrushev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R.R.C is supported by the NIH (5R01NS100049-04). N.F.M. is supported by the NSF (DMS-1903015). S.S. is supported by the NSF (DMS-2123224) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coifman, R.R., Marshall, N.F. & Steinerberger, S. A Common Variable Minimax Theorem for Graphs. Found Comput Math 23, 493–517 (2023). https://doi.org/10.1007/s10208-022-09558-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09558-8

Keywords

Mathematics Subject Classification

Navigation