Skip to main content
Log in

A Counter-Example to Hausmann’s Conjecture

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In 1995 Jean-Claude Hausmann proved that a compact Riemannian manifold X is homotopy equivalent to its Rips complex \({\text {Rips}}(X,r)\) for small values of parameter r. He then conjectured that the connectivity of Rips complexes is a monotone function in r, a statement which has been supported by all known examples up to present. In this paper, we prove that \(S^3\) equipped with a certain Riemannian metric is a counter-example to Hausmann’s conjecture. Our proof combines the Stability Theorem of persistent homology, a persistent version of Hausmann’s Theorem, and an approximation theorem of Ferry and Okun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Adamaszek and H. Adams, The Vietoris-Rips complexes of a circle, Pacific Journal of Mathematics 290(2017), 1–40.

    Article  MathSciNet  Google Scholar 

  2. M. Adamaszek, H. Adams, E. Gasparovic, M. Gommel, E. Purvine, R. Sazdanovic, B. Wang, Y. Wang, L. Ziegelmeier, On homotopy types of Vietoris-Rips complexes of metric gluings, Journal of Applied and Computational Topology 4(2020), 425–454.

    Article  MathSciNet  Google Scholar 

  3. M. Adamaszek, H. Adams, and S. Reddy, On Vietoris-Rips complexes of ellipses, Journal of Topology and Analysis 11(2019), 661–690.

    Article  MathSciNet  Google Scholar 

  4. H. Adams, S. Chowdhury, A. Jaffe, and B. Sibanda, Vietoris-Rips complexes of regular polygons, arXiv:1807.10971

  5. H. Adams, Ethan Coldren, and Sean Willmot, On Vietoris-Rips Complexes of Planar Curves, arXiv:1812.03374

  6. D. Attali, A. Lieutier, and D. Salinas, Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes, in Proceedings of the 27th annual ACM symposium on Computational geometry, SoCG ’11, New York, NY, USA, 2011, pp. 491–500.

  7. A. J. Blumberg and M. Lesnick, Universality of the Homotopy Interleaving Distance, arXiv:1705.01690

  8. F. Chazal, W. Crawley-Boevey, and V. de Silva, The observable structure of persistence modules, Homology, Homotopy and Applications 18(2016), 247 –265.

    Article  MathSciNet  Google Scholar 

  9. F. Chazal, V. de Silva, M. Glisse, and S. Oudot, The Structure and Stability of Persistence Modules, Springer Briefs in Mathematics, 2016.

  10. F. Chazal, V. de Silva, and S. Oudot, Persistence stability for geometric complexes, Geometriae Dedicata 173(2014), 193–214.

    Article  MathSciNet  Google Scholar 

  11. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of persistence diagrams, Discrete & Computational Geometry 37(2007), 103–120.

    Article  MathSciNet  Google Scholar 

  12. H. Edelsbrunner and J.L. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, Rhode Island, 2010.

    MATH  Google Scholar 

  13. D.A. Edwards, The Structure of Superspace, in Studies in Topology, Academic Press, 1975.

    Google Scholar 

  14. S. Ferry and B. Okun, Approximating Topological Metrics by Riemannian Metrics, Proceedings of the American Mathematical Society, 123(1995), 1865–1872.

    Article  MathSciNet  Google Scholar 

  15. E. Gasparovic, M. Gommel, E. Purvine, R. Sazdanovic, B. Wang, Y Wang, and L. Ziegelmeier, A Complete Characterization of the \(1\)-Dimensional Intrinsic Čech Persistence Diagrams for Metric Graphs, in Research in Computational Topology (E. Chambers, B. Fasy, L. Ziegelmeier eds.), Springer International Publishing, 2018, pp. 33–56.

  16. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  17. J-C. Hausmann, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, Annals of Mathematics Studies, 138(1995), 175–188.

  18. J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman, Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex, in Proceedings of the 36th International Symposium on Computational Geometry, SoCG ’20, 2020, pp. 54:1–54:19.

  19. K. Kuratowski, Topology, Volume I, Academic Press/PWN, 1966.

  20. J. Latschev, Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Archiv der Mathematik, 77(2001), 522–528.

    Article  MathSciNet  Google Scholar 

  21. P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete & Computational Geometry, 39(2008), 419–441.

    Article  MathSciNet  Google Scholar 

  22. Ž. Virk, 1-Dimensional Intrinsic Persistence of geodesic spaces, Journal of Topology and Analysis 12(2020), 169–207.

    Article  MathSciNet  Google Scholar 

  23. Ž. Virk, Rips complexes as nerves and a Functorial Dowker-Nerve Diagram, Mediterranean Journal of Mathematics, 18(2021), 58.

Download references

Acknowledgements

The author would like to thank the referees for very good suggestions that improved the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Virk.

Additional information

Communicated by Shmuel Weinberger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was supported by Slovenian Research Agency Grant No. N1-0114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virk, Ž. A Counter-Example to Hausmann’s Conjecture. Found Comput Math 22, 469–475 (2022). https://doi.org/10.1007/s10208-021-09510-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09510-2

Keywords

Mathematics Subject Classification

Navigation