Skip to main content
Log in

Local Approximation from Spline Spaces on Box Meshes

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper analyzes the approximation properties of spaces of piecewise tensor product polynomials over box meshes with a focus on application to isogeometric analysis. Local and global error bounds with respect to Sobolev or reduced seminorms are provided. Attention is also paid to the dependence on the degree, and exponential convergence is proved for the approximation of analytic functions in the absence of non-convex extended supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. All the assumptions are conveniently listed in Table 1.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, second edn. Elsevier/Academic Press, Amsterdam (2003)

  2. Beckenbach, E.F., Bellman, R.: Inequalities, fourth edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 30. Springer-Verlag, Berlin (1983)

  3. Beirão da Veiga, L., Buffa, A., Cho, D., Sangalli, G.: Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Engrg. 249/252, 42–51 (2012). https://doi.org/10.1016/j.cma.2012.02.025

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23(11), 1979–2003 (2013). https://doi.org/10.1142/S0218202513500231

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numerica 23, 157–287 (2014). https://doi.org/10.1017/S096249291400004X

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Cho, D., Sangalli, G.: Anisotropic NURBS approximation in isogeometric analysis.: . Comput. Methods Appl. Mech. Engrg. 209/212, 1–11 (2012). https://doi.org/10.1016/j.cma.2011.10.016

    Article  MathSciNet  MATH  Google Scholar 

  7. de Boor, C.: A practical guide to splines, Applied Mathematical Sciences, vol. 27, revised edn. Springer-Verlag, New York (2001)

  8. Bressan, A.: Some properties of LR-splines. Comput. Aided Geom. Design 30(8), 778–794 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bressan, A., Buffa, A., Sangalli, G.: Characterization of analysis-suitable T-splines. Comput. Aided Geom. Design 39, 17–49 (2015). https://doi.org/10.1016/j.cagd.2015.06.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Bressan, A., Jüttler, B.: A hierarchical construction of LR meshes in 2D. Comput. Aided Geom. Design 37, 9–24 (2015). https://doi.org/10.1016/j.cagd.2015.06.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Bressan, A., Mokriš, D.: A versatile strategy for the implementation of adaptive splines. In: Mathematical methods for curves and surfaces, Lecture Notes in Comput. Sci., vol. 10521, pp. 42–73. Springer, Cham (2017)

  12. Buffa, A., Garau, E.M., Giannelli, C., Sangalli, G.: On quasi-interpolation operators in spline spaces. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, pp. 73–91. Springer, [Cham] (2016)

  13. Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math. Models Methods Appl. Sci. 26(1), 1–25 (2016). https://doi.org/10.1142/S0218202516500019

    Article  MathSciNet  MATH  Google Scholar 

  14. Buffa, A., Giannelli, C., Morgenstern, P., Peterseim, D.: Complexity of hierarchical refinement for a class of admissible mesh configurations. Comput. Aided Geom. Design 47, 83–92 (2016). https://doi.org/10.1016/j.cagd.2016.04.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Buffa, A., Sangalli, G., Schwab, C.: Exponential convergence of the \(hp\) version of isogeometric analysis of 1D. In: Spectral and high order methods for partial differential equations—ICOSAHOM 2012, Lect. Notes Comput. Sci. Eng., vol. 95, pp. 191–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01601-6_15

  16. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30(3), 331–356 (2013). https://doi.org/10.1016/j.cagd.2012.12.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980). https://doi.org/10.2307/2006095

    Article  MathSciNet  MATH  Google Scholar 

  18. Durán, R.G.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20(5), 985–988 (1983). https://doi.org/10.1137/0720068

    Article  MathSciNet  MATH  Google Scholar 

  19. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. SIGGRAPH Comput. Graph. 22(4), 205–212 (1988). https://doi.org/10.1145/378456.378512

    Article  Google Scholar 

  20. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. CAGD 29(7), 485–498 (2012). https://doi.org/10.1016/j.cagd.2012.03.025

    Article  MathSciNet  MATH  Google Scholar 

  21. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014). https://doi.org/10.1007/s10444-013-9315-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194(39-41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kraft, R.: Adaptive and linearly independent multilevel B–splines. In: A. Le Méhauté, C. Rabut, L.L. Schumaker (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    MATH  Google Scholar 

  24. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear independence of T-spline blending functions. Comput. Aided Geom. Design 29(1), 63–76 (2012). https://doi.org/10.1016/j.cagd.2011.08.005

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyche, T., Manni, C., Speleers, H.: Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement. In: T. Lyche, C. Manni, H. Speleers (eds.) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra, Cetraro, Italy 2017, vol. 2219, pp. 1–76. Springer Nature Switzerland AG (2018). https://doi.org/10.1007/978-3-319-94911-6

  26. Lyche, T., Mørken, K.M.: Spline Methods Draft (2018) https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018-v0.pdf

  27. Lyche, T., Schumaker, L.L.: Local spline approximation methods. J. Approx. Theory 15, 294–325 (1975). https://doi.org/10.1016/0021-9045(75)90091-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Mokriš, D., Jüttler, B.: TDHB-splines: the truncated decoupled basis of hierarchical tensor-product splines. Comput. Aided Geom. Design 31(7-8), 531–544 (2014). https://doi.org/10.1016/j.cagd.2014.05.004

    Article  MathSciNet  MATH  Google Scholar 

  29. Morgenstern, P.: Globally structured three-dimensional analysis-suitable T-splines: definition, linear independence and \(m\)-graded local refinement. SIAM J. Numer. Anal. 54(4), 2163–2186 (2016). https://doi.org/10.1137/15M102229X

    Article  MathSciNet  MATH  Google Scholar 

  30. Morgenstern, P., Peterseim, D.: Analysis-suitable adaptive T-mesh refinement with linear complexity. Comput. Aided Geom. Design 34, 50–66 (2015). https://doi.org/10.1016/j.cagd.2015.02.003

    Article  MathSciNet  MATH  Google Scholar 

  31. Range, R.M.: Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108. Springer-Verlag, New York (1986). https://doi.org/10.1007/978-1-4757-1918-5

  32. Reif, U.: Polynomial approximation on domains bounded by diffeomorphic images of graphs. J. Approx. Theory 164(7), 954–970 (2012). https://doi.org/10.1016/j.jat.2012.03.010

    Article  MathSciNet  MATH  Google Scholar 

  33. Reif, U., Sissouno, N.: Approximation with diversified B-splines. Comput. Aided Geom. Design 31(7-8), 510–520 (2014)

    Article  MathSciNet  Google Scholar 

  34. Scherer, K., Shadrin, A.: New upper bound for the b-spline basis condition number: Ii. a proof of de boor’s 2k-conjecture. Journal of approximation theory 99(2), 217–229 (1999)

    Article  MathSciNet  Google Scholar 

  35. Schötzau, D., Schwab, C.: Exponential convergence for \(hp\)-version and spectral finite element methods for elliptic problems in polyhedra. Math. Models Methods Appl. Sci. 25(9), 1617–1661 (2015). https://doi.org/10.1142/S0218202515500438

    Article  MathSciNet  MATH  Google Scholar 

  36. Schumaker, L.L.: Spline functions: basic theory, third edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511618994

  37. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. In: ACM transactions on graphics (TOG), vol. 23, pp. 276–283. ACM (2004)

  38. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. In: ACM transactions on graphics (TOG), vol. 22, pp. 477–484. ACM (2003)

  39. Speleers, H.: Hierarchical spline spaces: quasi-interpolants and local approximation estimates. Adv. Comput. Math. 43(2), 235–255 (2017). https://doi.org/10.1007/s10444-016-9483-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132(1), 155–184 (2016). https://doi.org/10.1007/s00211-015-0711-z

    Article  MathSciNet  MATH  Google Scholar 

  41. Verfürth, R.: A note on polynomial approximation in Sobolev spaces. M2AN Math. Model. Numer. Anal. 33(4), 715–719 (1999). https://doi.org/10.1051/m2an:1999159

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 339643.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bressan.

Additional information

Communicated by Nira Dyn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressan, A., Lyche, T. Local Approximation from Spline Spaces on Box Meshes. Found Comput Math 21, 807–848 (2021). https://doi.org/10.1007/s10208-020-09467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-020-09467-8

Keywords

Mathematics Subject Classification

Navigation